

 Eental pugpover notwitht thatna any copyidnt ngt ton berov.

The Rend Publicetions Sentas: The Repent is the princlpel quatrontint too

 ponemi diteribution. Publientions of The Rema Compention do net mencic.

UNCLASSIFIED

15. OETNIOUTIOM STATEMENT (OI AHOO RAmen)

Approved for Public Release; Distribution Unlimited

No Restrictions
16. SUPDLEMENTAAY MOTES

Models
Military Air Facilities
Attacks
Computer Programs

See Reverse Side

$$
2+6!
$$

RPN 3509 N-1460-AF TSARINA: User's Guide to a Computer Model for Damage Assessment of Complex Airbase Targets.\# D. Emerson. July 1980.

- $\because>$ Description of the TSARINA computer program, developed to examine conventional air attacks against complex targets and to assess losses and damage to categories of resources and to buildings and other facilities. TSARINA permits damage assessments of attacks on an airbase complex composed of up to 500 individual targets (buildings, taxiways, etc.), and 1000 packets of resources. Targets may be grouped into 20 vulnerability categories, and different types of personnel, equipment, munitions, spare parts, and other support resources can be distinguished. TSARINA determines the actual impact points by Monte Carlo procedures and the losses and damage are assessed using "cookie-cutter' ${ }^{\text {C }}$ weapon-effects approximations. TSARINA may be employed separately as a general-purpose model or used in conjunction with the TSAR (Theatre Simulation of Airbase Resources) computer model to assess the impact of airbase damage on sortie generation capabilities and to evaluate proposals for improving those capabilities at an airbase or set of airbases. Detailed user instructions and a listing of the program are included. 123 pp . (Author)

A RAND NOTE

TSARINA--USER'S GUIDE TO A COMPUTER MODEL FOR DAMAGE ASSESSMENT OF COMPLEX AIRBASE TARGETS

Donald Emerson

July 1980
$\mathrm{N}-1460-\mathrm{AF}$

Prepared For
The United States Air Force

PREFACE

This Note describes TSARINA, a special modification of Rand's Airbase Damage Assessment (AIDA) computer model that has been developed for examining conventional air attacks against complex targets and for assessing losses and damage to various categories of resources as well as to various buildings and other facilities. TSARINA may be employed as a general purpose damage assessment model, or as a special purpose model for use with the TSAR (Theater Simulation of Airbase Resources) computer model. This Note includes detailed user instructions as well as a listing of the program.

TSARINA was developed by Rand for use with the TSAR model for studying means of sustaining and improving wartime sortie generation capabilities, despite unexpected demands and sudden unpredictable resource shortages imposed by air attacks. TSARINA is basically a Monte Carlo computer model that can generate sample patterns of airbase damage for incorporation into the TSAR simulation, or statistical summaries of the damage and resource losses for multiple samples of the specified attack.

TSARINA has a variety of possible applications. It can be used separately to assess the casualties and losses that would be sustained from air attacks on airbases (or other complex targets), and to assess the impact of various dispersal and/or hardening proposals on the expected losses. It can also be used in conjunction with the TSAR simulation model to assess the impact of airbase damage on sortie generation capabilities, and to evaluate proposals for improving those capabilities at an airbase or a set of airbases.

TSARINA has been used in a study for the Air Staff of the personnel casualties and War Reserve Materiel (WRM) losses that might be sustained in high-level conventional conflict in Europe or Korea, and it is currently being applied in conjunction with TSAR to examine alternative proposals for improving the Air Force's wartime sortie generation capabilities, under Project AIR FORCE. The model, which has been discussed with many groups within the Air Force, has been transferred to the Office of the Assistant Chief of Staff, Studies \& Analyses. This Note is being published to provide documentation for the model and to introduce it to a wider audience. The computer program is available from The Rand Corporation.

This work was conducted under the Project AIR FORCE research project entitled "Strategies To Improve Sortie Production in a Dynamic Wartime Environment."

SUMMARY

This Note describes a new version of the AIDA airbase damage assessment computer program that has been developed to assess losses to various on-base resources; as well as damage to runways, taxiways, buildings, and other facilities. The model may be used either as a general-purpose, complex-target damage assessment model, or as a special-purpose model in support of the TSAR simulation program. When used with TSAR, multiple trials of a multi-base airbase-attack campaign can be assessed with TSARINA, and, in a continuous computer operation, the impact of those attacks on sortie generation can be derived using the TSAR simulation model.

TSARINA, as presently configured, permits damage assessments of attacks on an airbase (or other) complex that is composed of up to 500 individual targets (buildings, taxiways, etc.), and 1000 packets of resources. The targets may be grouped into 20 different vulnerability categories, and many different types of personnel, equipment, munitions, spare parts, TRAP (tanks, racks, adaptors, and pylons), building materials, and POL (petroleum, oils, and lubricants) can be distinguished. The attacks may involve as many as 50 weapon-delivery passes and 10 types of weapons. Both point-impact weapons (such as general-purpose bombs and precision-guided munitions) and area weapons (such as cluster bomb units (CBUs)) can be accommodated.

TSARINA determines the actual impact points (pattern centroids for CBU's) by Monte Carlo procedures--i.e., by random selections from the appropriate error distributions. heapons that impact within a specified distance of each target type are classed as hits, and estimates of the damage to the structures and to the various classes of support resources are assessed using "cookie-cutter" weapon-effects approximations. In addition to the weapon-effects procedures used with AIDA, this model also permits use of a novel two-level cookie-cutter representation for assessing damage to the various classes of resources.

For each trial computation of an attack, the program determines the fraction of each target covered by the circular damage coverage patterns, and the results include estimates of the overall damage to each target and to all resource classes that are colocated with that target. In addition, the output includes an estimate of the total damage sustained by each type of resource at its various storage locations. The attack may be repeated automatically for several trials to provide statistics on the average damage levels to each of the targets and to each type of resource.

A maximum of five targets may be designated as runways or taxiways suitable for aircraft operations, and the model will examine these to see if an area of a user-specified size is available for aircraft operations; if not, the minimum number of craters that would need to be repaired to obtain an area of that size is determined.

The TSARINA program is written in FORTRAN IV, and should be readily adaptable to other computer systems, as was the widely used AIDA model. This Note provides a full discussion of the use of TSARINA as a general-purpose damage assessment model, and outlines in detail the special requirements for its use in conjunction with the TSAR simulation program. Most features of the model are illustrated with a sample problem. Appendixes include a description of TSARINA input requirements, definitions of all variables and arrays found in TSARINA common statements, and a listing of the complete TSARINA source code.

GLOSSARY

Resource class	All airbase support resources are grouped into seven classes: personnel, equipment and AGE, aircraft spare parts, munitions, TRAP, building materials, and POL.
Resource type	Different types of resources may be distinguished within each resource class; e.g., different categories of aircraft maintenance specialists. Resource, when used alone, implies a resource type.
Resource packet	A user-specified percentage of a given resource is referred to as a resource packet; resources are located within the target complex as packets.
Target	A target is represented by a rectangle that is located in an $X-Y$ coordinate system; individual buildings, runways, taxiways, parking areas, etc., can be designated as targets.
Target complex	A target complex, such as an airfield or an industrial area, is a collection of rectangular targets.
Target type	A target type is specified for each target; all targets of the same type have the same vulnerability, and all resource types of the same resource class located at the same type of target have the same vulnerability.
GP	General-purpose (bomb).
PGM	Precision-guided munition.
POL	Petroleum, oils, and lubricants.
TRAP	Tanks, racks, adaptors, and pylons.
WRM	War reserve materiel.
AGE	Aerospace ground equipment.

The author would like particularly to acknowledge Felix Kozaczka and Louis Wegner of the Rand staff for a variety of suggestions that should make the TSARINA program, and this documentation, more useful and understandable.

CONTENTS

PREFACE iii
SUMMARY v
GLOSSARY vii
ACKNOWLEDGMENTS ix
Section
I. INTRODUCTION 1
II. TARGET DATA 3
III. DAMAGE ASSESSMENTS FOR TSAR 5
TSAR Relationships Between Facilities and Resources 6
Identification of Airbase Facilities 8
Procedures to Ensure Resource Category Compatability 12
IV. WEAPON EFFECTIVENESS DATA 15
Point-Impact Weapons 15
CBU Munitions 19
V. SAMPLE PROBLEM 20
Input 20
Output 27
Appendix
A. DETAILED DESCRIPTION OF TSARINA INPUT. 37
B. DEFINITIONS OF VARIABLES AND ARRAYS CSED IN TSARINA
"COMMON" STATEMENTS 59
C. TSARINA SOURCE CODE AND COMMENTS 70
D. PROGRAMMERS' NOTES 122

I. INTRODUCTION

TSARINA (TSAR INputs using AIDA) is a modified version of the AIDA (AIrbase Damage Assessment) computer model*; it was developed to generate airbase damage estimates for a campaign of air attacks, and to organize those results for direct entry into the TSAR (Theater Simulation of Airbase Resources) sortie generation model,** which can assess the impact of the destructive effects of attacks. Several key changes have been made to the AIDA model so that the on-base location of resources (e.g., personnel, munitions, aircraft spare parts, etc.) can be readily associated with various targets (structures/facilities), and so that different MAEs (mean areas of effectiveness) and/or Pks (kill probabilities) can be defined for the different resources. These changes also permit a novel two-level "cookie-cutter"*** representation of the effectiveness of weapons against the various classes of resources. In addition, the various effectiveness values may be different for direct hits and for near misses. With these added input data, TSARINA generates estimates of the losses among the various on-base resources, in addition to the estimates of hits and facility damage that are generated by the original AIDA model.

TSARINA may be used either as a special-purpose model in support of the TSAR simulation, or as a general-purpose damage assessment model. When used with TSAR, multiple trials of a multi-base airbase-attack campaign can be evaluated with TSARINA, and, in a continuous computer operation, the impact of

[^0]those attacks on sortie generation can then be derived using the TSAR simulation model. When TSARINA is used for damage estimates only, the various protocols required for use with TSAR (Section III) may be ignored.

Since AIDA, and this new version of AIDA, employ identical target and attack representations, the reader is referred to the AIDA report for a discussion of these concepts. The emphasis in this note will be on the special features associated with TSARINA. With both AIDA and TSARINA the user is able to specify the size, location, and nature of several hundred rectangular targets and the characteristics of up to 50 weapon-delivery passes.* Targets can be categorized into 20 vulnerability classes, and up to 10 types of weapons may be employed in any given attack; point-impact and CBU munitions may be used in the same attack. Both TSARINA and AIDA are basically Monte Carlo models; however, an expected-value mode is available as an option for evaluating damage to aircraft shelters.

[^1]
II. TARGET DATA

In AIDA and TSARINA, the facilities on an airbase are represented as a target complex consisting of a number of rectangular-shaped targets (e.g., runways, parking ramps, buildings); the size, location,* and type of each target are specified. With TSARINA the user may also specify the resources that are associated with each target. The resources to be identified may be grouped into seven categories; personnel, equipment, aircraft spare parts, munitions, TRAP, building materials, and POL. And within each class, different subclasses may be distinguished by type; for example, the personnel class may distinguish pilots, crew chiefs, radar repair specialists, and weapons loaders. Hereafter, the term resource will refer to a particular resource class and type.

The user may specify the percentages of the different resources that are located at each target. Thus, personnel with different specialties may be located at different facilities; AGE and other equipment can be located in various buildings or parked in designated areas; and different kinds of munitions, TRAP, etc., can similarly be located in various proportions in various on-base locations.

The losses estimated for each resource depend upon the attack weapon type, weapon impact location, resource class, and target type, location, and orientation. ${ }^{*=}$ In each case, it is assumed that the resource is distributed uniformly

[^2]within the target area, and that the aggregate losses for that resource are the sum of the losses estimated to be sustained at each of the target locations. Additional Weapon effectiveness data must be supplied to complement these extended target descriptors and the user is given considerable flexibility as to how these data are expressed, as discussed in Section IV.

Any number of resource packets may be associated with each target, except that there may be no more than 1000\%: packets in total. The designations used to specify the different classes of resources are defined in the subsequent discussion of supplementary TGT cards. The "integer" designators that are to be assigned to each type of resource are selected by the user; the only constraint is that the integers chosen are not greater than the size of the corresponding storage array.

TSARINA's treatment of runways is identical with that described for AIDA. Runways must always be identified as type \#1 targets; up to five may be entered. When the minimum clear length and width needed for flight operations are identified, and the "minimum repair requirements" option is requested (on the CONT card), all runway targets are searched to find whether or not an uncratered area of the required size exists, and if not, what the smallest number of crater repairs would be to attain that amount of clear space.

[^3]
III. DAMAGE ASSESSMENTS FOR TSAR

When TSARINA is to be used to generate damage assessments for he TSAR simulation, it is necessary to make the specifications for the targets and the resources consistent with the conventions used in TSAR. If TSARINA is not to be used with TSAR, but as a general-purpose damage assessment model, the reader may skip to Section IV.

The TSAR computer model is a large, complex, task- oriented event-simulation model that has been developed to interrelate the number of effective sorties that can be generated in wartime at a set of airbases to the resources that are available. It has been designed to provide a means of assessing the potential contributions of various ideas for improving and sustaining sortie capabilities, despite unexpected wartime demands and sudden unpredictable resource shortages imposed by airbase attacks. When used with TSAR, TSARINA generates sample patterns of airbase damage and loss that are incorporated into the simulated TSAR scenario. Special requirements must be satisfied when using TSARINA in order for TSARINA outputs to interface satisfactorily with TSAR.

These additional requirements are a necessary reflection of the considerable complexity and flexibility of the TSAR simulation, and arise as a result of

- The mechanism employed in TSAR to associate resources with facilities
o The conventions used in TSAR to identify facilities
- The procedures provided to permit disparate resource categorizations in the two models.

The following subsections will expand on each of these items.

TSAR RELATIONSHIPS BETVEEN FACILITIES AND RESOURCES

The TSARINA results include estimates of (1) the percentage loss for each resource class at each target and (2) the overall percentage loss for each type of resource at ail locations. When used in TSAR, one or the other of these percentages are applied to the quantities of each resource at risk at the time of the attack. For most resources, losses are estimated using the second of these two type of estimates. Since the derivation of this loss percentage in TSARINA is based on a nominal user-specified on-base resource disposition, and is not affected by the particular consumption experience in the TSAR simulation, the use of this overall estimate effectively assumes that the on-base disposition of a given subcategory of resource, expressed in percent, is not dependent upon the absolute level of such resources. The first type of loss estimate is used only for on-duty maintenance personnel, aircraft maintenance equipments, and reparable spare parts; these resources are accounted for individually within TSAR, so that their assigned location at the time of the attack is known.

The TSAR simulation is able to associate these resources with particular facilities because it assigns personnel and equipment to each individual task and those tasks (are normally assumed to) occur in a designated facility. The maintenance personnel engaged in on-equipment maintenance are assumed to be in close proximity to the aircraft to which they are assigned. n_{n}-duty maintenance personnel who are not actively engaged in on-equipment maintenance are assumed to be awaiting assignment at their respective work centers, or, in the case of the flightline personnel in a COMO (Combat Oriented Maintenance Organizatior.), in a particular flightline facility. Specialists involved in parts repair jobs are assumed to be in the facility designated for the repair of the particular type of part that they are repairing, as are all reparable spare parts.

Losses among resources engaged in on-equipment maintenance always are conditioned by a separate assessment of the likelihood that the aircraft is exposed to damage (this relationship will be explained shortly). For the others, the nominal TSAR-TSARINA logic presumes that unassigned on-duty personnel and equipment, and personnel and equipment engaged in offequipment parts repair, are in their designated facilities, and that the loss percentages to these resources are related to the damage to those facilities. In this way, appropriate loss percentages are assigned these mobile resources at the instant of the attack. Damage estimates for facilities and their associated resources are only passed to TSAR for designated targets; this is done by entering the facility number (as defined in the TSAR data structure) on the appropriate TSARINA TGT cards. If the user wishes the target-dependent loss percentages to be transferred to TSAR for some targets, but not for others, the facility numbers for the latter targets should not be entered.

Also, if the user wants the target-dependent loss percentage to be used for some of the resources that are nominally associated with a particular facility, but not for others of those resources, the target-dependent value will be overridden in TSAR for whichever resources have a specific damage estimate transmitted to TSAR. Thus, if on-duty radar technicians have been located in a variety of facilities for the TSARINA airbase attack simulation, the TSARINA estimate of percent damage for those technicians will normally be applied to all such personnel not engaged in on-equipment aircraft maintenance within TSAR, even though a different personnel loss percentage is associated with their normal work facility, and it is passed to TSAR. To prevent the target-dependent estimate from being overridden, the user must either not include the specific locations for these technicians, or specifically instruct TSARINA not to transfer the estimate by use of the EQUI card format, as discussed later in this section.

[^4]Careful attention to which targets are identified with a TSAR facility number, and which resources are located specifically in TSARINA, provides the user substantial flexibility for controlling the damage information transferred from TSARINA to TSAR and thereby representing his knowledge of expected on-base conditions in the simulation data base.

IDENTIFICATION OF AIRBASE FACILITIES

Some airbase facilities are handled in an aggregate manner in TSAR--aircraft shelters, runways, taxiways, and aircraft parking ramps--and for these facilities the user simply specifies the target-type number (on the DATA card, see p. 41) that is used in TSARINA to designate these kinds of facilities. Other facilities--those that relate to specific maintenance functions--are identified within TSAR with specific facility numbers, and these facility numbers must be identified in TSARINA if damage to these facilities is to be communicated to TSAR from TSARINA. The following paragraphs discuss the particular data requirements for each of the several target classes.

Runways

The maximum number of facilities that are distinguished in TSAR is designated by the variable NOFAC. By TSAR convention, the runway is identified by that maximum number, i.e., NOFAC.* For TSARINA the value of NOFAC is specified in the source code of the MAIN subroutine, along with the dimensions of other key TSAR arrays. The user should consult the comments in the MAIN routine for a description of the particular TSARINA configuration he has available; if the configuration is at variance with his TSAR configuration, changes to the TSARINA configuration are easily accomplished.

[^5]
Aircraft Parking Ramps

For aircraft parking ramps, TSARINA generates an estimate for the percentage of exposed aircraft that are damaged by computing the expected percentage of aircraft parts that would be destroyed, if they were dispersed at random in these areas, using the rules given in Section IV for specifying aircraft parts vulnerability. In using this estimate, TSAR first subtracts the number of aircraft that could be sheltered from the number of aircraft on the ground, and assumes that the remainder are unsheltered. The survival of the unsheltered aircraft is then checked by comparing a random number for each aircraft with the exposed aircraft damage percentage estimated in TSARINA.

Taxiways

For taxiways TSARINA simply counts the number of point-impact weapons that hit on, or within the weapon radius of, these targets. The TSARINA output identifies these hits with the TSAR target number for taxiways. Hits on the taxiways are communicated to TSAR as damage to facility number NOFAC-1.

Maintenance Shops

In TSAR each on-equipment task and parts repair job is associated with a particular shop or facility. If the shop is damaged, the parts repair jobs and certain designated on-equipment tasks can not be accomplished. Facilities \#1 through \#24 are reserved for the locations of the various specific maintenance functions (i.e., work-centers or shops) that are designated by the same number. When the facility number for one of these maintenance functions is entered on the TGT card in TSARINA, damage to that facility is communicated to TSAR.

Other facility numbers are reserved for other functions: \#27 relates to aircraft reconfiguration, \#28 to munitions loading, \#29 to fuel servicing, and \#30 to munitions assembly; facilities $\# 31$, \#32, and $\# 33$ are used to define the assembly points for the flightline specialists associated with squadrons
one, two, and three, respectively, in a AFR 66-5, or COMO, maintenance organization. Damage to each of these facilities will also be transmitted to TSAR when their facility number is identified on the appropriate TGT card.

When any of these facilities sustain one or more "hits," TSARINA generates an estimate of the percentage of the facility that sustains damage, as well as estimates of the percentage losses sustained by the personnel, AGE, and parts present in the facility at the time of the attack.

Aircraft and Aircraft Shelters

TSAR assesses aircraft damage and loss by drawing a random number for each aircraft on-base at the moment of attack, and by comparing that number with an estimate of the fraction of the aircraft that are damaged and/or killed. In TSARINA a damage fraction is generated both for sheltered and unsheltered aircraft, and TSAR applies the latter fraction to that number of on-base aircraft that exceed the then-current capacity of the shelters, as noted earlier.

Damage to shelters and sheltered aircraft are handled uniquely in TSARINA, in that the damage estimate may be generated either with the Monte Carlo mode (as for other targets) or with the expected-value mode. The Monte Carlo mode is required if the user wishes to consider specific resources that might be stored in the shelters; if he does not have that requirement, he may reduce TSARINA computer processing by use of the expected-value mode.*

With TSARINA the user designates the target type that he has assigned to shelters on the DATA card (see p. 41), and enters the location and size data for each shelter either with the TGT or TGT2 type cards, depending upon whether the Monte Carlo or expected-value mode is to be used for assessing damage.

[^6]Weapon effectiveness entries are also handled differently for these targets. In all, 14 different weapon effectiveness data may be entered; 13 for each type of weapon, and one that is presumed to apply for all weapons. To enter these data in TSARINA, 14 cards are entered for each point-impact type weapon, rather than the one or two cards that are used in AIDA. The entry on the first card is interpreted as the effective miss distance against buttoned-up shelters; a hit is recorded whenever a weapon strikes within this distance of a shelter. Data entered on the second through ninth cards control the damage estimates for personnel, AGE, spare parts, munitions, TRAP, and building materials that might be stored in the shelters when a weapon strikes within the first effective miss distance. The several resource damage criteria that are available are explained in Appendix A. When the expected value mode is used, only the third through fifth of these cards is used, and the entries are interpreted as the percent losses sustained by personnel, AGE, and spare parts in a shelter that has closed doors when a hit has been recorded.

Four additional data are entered on the tenth, twelfth, thirteenth and fourteenth EMD cards; the first defines the effective miss distance against aircraft in a shelter with an open door, the next two define the probability of damage to an aircraft when the shelter door is closed, and when it is open, and the last defines the probability of kill of the shelter itself, when a weapon strikes within the first effective miss distance. The factor that controls the fraction of the damaged aircraft that are not reparable is entered on the DATA card, as explained on page 41. This factor is presumed to apply for whatever mix of weapons has been used in the attack.

The various assessments of aircraft and shelter damage, and of the losses among resources associated with the aircraft at the moment of the attack, are communicated to TSAR as class 8 and class 10 in a particular facility; the data structure for these transmissions can be inferred from the code in subroutine DAMAGE.

PROCEDURES TO ENSURE RESOURCE CATEGORY COMPATIBILITY

A requirement for the proper functioning of TSAR and TSARINA is that the level of detail at which resources are specified must be the same for both models. Although it might be adequate for some damage assessments for resource types to be lumped into broad categories, such aggregate results would not be useful for the simulation if these resources were treated in more specific terms in TSAR. Thus, one cannot specify "air-to-air missile losses" in the TSARINA output if TSAR requires that losses of AIM-7s and AIM-9s be distinguished.

The required consistency can be achieved in three different ways. First, TSARINA inputs may specify the location data separately for each type of, say, munition that is to be distinguished in TSAR. Or, if the user cannot distinguish the locations for some types of munitions, he may locate them as a group, and then specify that the same damage should be reported to TSAR for each type of munition in the group; the EQUIvalence card-format is used for this purpose. Lastly, if the individual locations for many, or all, of the various types of any class of resources cannot be distinguished, the user may locate these resources and report their common damage to TSAR by the simple expedient of not specifying a resource number. To clarify these options, consider the following table:

Type-Number Specified in
TSARINA Location Data

1

3
4

1
2
3
4
5
6
7
8
9
0
10
11
12

Assuming that the resource class is TRAP，for example，this is how one would handle the situation in which the TSAR data base distinguished 12 different types of TRAP，but location data could only be specified for four different categories，and only one corresponded to the TSAR data base，e．g．，TRAP \＃3．Location
 TRAP \＃7 through 非12 cannot be distinguished，presumably，for this example．The only special action the user needs to take is to define the actual types of TRAP，implied by the TSARINA type numbers 1 and 4，using the EQUI data cards．It should be noted that the numbers need not be in any special sequence and that type $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ O always implies＂all types not otherwise specified．＂

When dealing with personnel and munitions，two other special features come into play．The first of these is concerned with the distinction between on－duty and off－duty personnel，which are treated differently within TSAR．To indicate that a particular category of personnel is off－duty，the number 1000 is added to the nominal personnel type when their location data are entered．＊ When this is done，casualties among on－and off－duty personnel are estimated separately in TSARINA and reported separately to TSAR without any additional user input．Specification of personnel type \＃1000 implies all off－duty personnel types that are not otherwise specified．

The other special number convention permits the user to distinguish the locations and damage to assembled and unassembled munit．ions；unassembled munitions are identified simply by adding the number 100 to the nominal munition type designation．Thus，if munition $⿰ ⿰ 三 丨 ⿰ 丨 三 彡 5$ were assembled AIM－7s，munition $; 105$ would refer to unassembled AIM－7s．These special identity numbers for personnel

[^7]and munitions may either be assigned to the resources when their location data are specified, or subsequently, using the EQUIvalence card type.

IV. WEAPON EFFECTIVENESS DATA

For each weapon type the user has several options for specifying its effectiveness against the various types of targets (facilities) and against the various resources that may be present at those targets. These options are expressed by up to 17 data for each target type and for each type of weapons; these 17 data are entered using the EMD card (see page 50) and up to 16 supplementary cards for each type of weapon.

As described more fully in the AIDA report, the basic mathematical representation that is used for the effectiveness of a point-impact weapon is what has been called a cookie-cutter--that is, a uniform probability of kill over a circle of specified radii. Integration of actual weapon effects kill probability contours over the many rectangular targets was rejected in order to limit computer processing. Although the cookie-cutter approach to representing weapon effects has been retained in TSARINA, an attempt has been made to provide the user somewhat greater flexibility for these approximate weapon effects representations. As developed below, there are eight different possibilities provided for estimating losses for each of the different classes of resources, including what might be defined as a two-level cookie-cutter; i.e., an inner circle with a specified Pk , and an outer circle defined such that the average $P k$ is just one-fourth that for the inner circle.

POINT IMPACT WEAPONS

For Each Target Type Except Aircraft Shelters
The first and tenth data for each target type are the mean radius of effectiveness (R 1) against the structures of that target type; these data are entered on the first and tenth of the EMD cards. The first entry applies to near misses and the tenth to
cirect hits; if a radius is not entered for direct hits, the first data applies in both cases. The TSARINA results include the fraction of each target that is covered by circles of these radii, one circle for each weapon delivered; the covered area is interpreted as the percent of target damage. Entries on the second and eleventh EMD cards are also effectivesness radii (R2); the interpretation of these radii is dependent upon the assessment criteria in use. The entries on the third through eighth, and the twelfth through seventeenth, EMD cards control damage assessments of the various resources in all facilities. These assessments, for the various resource classes, depend upon damage factors that are entered in the following locations:

EMD Card

Near Miss	Direct Hit	Resource Class
Third	12th	Personnel
Fourth	13th	AGE and equipment
Fifth	14th	Spare parts
Sixth	15th	Munitions and POL
Seventh	16th	TRAP
Eighth	17th	Building materials

As noted above, the "near miss" values apply when data are not entered for direct hits. If any data are entered for a particular target type on the eleventh through seventeenth cards, only data from those cards will be used in assessing direct hits; i.e., blank entries are interpreted as zero.

The values entered with these 12 resource damage cards are interpreted either (1) as effective kill radii against these resources, (2) as probabilities of kill of such resources within the radii R 1 or R 2 , or (3) as a radius and a kill probability that jointly define a "two-level" cookie-cutter, depending upon the value of the FLAG input described below.

Since munitions and POL would not be expected to be present together, little flexibility is lost with the dual definition used with the sixth (and fifteenth) card; it is important, of course, that the user be clear as to the distinction.

The interpretations of the weapon effectiveness parameters on these twelve cards are specified by the user on the ninth EMD card--i.e., by the value of the variable called "FLAG" in the program.

The user has eight options for handling the vulnerability of each of the six classes of resources, and FLAG communicates these six choices with a 6-digit code. These eight options are illustrated below:

The eight weapon effectiveness parameter options that are identified by the 6 -digit code are defined as:

0 Ignore this class of resource
1 Value represents probability of kill of these resources within a circle of radius R1

2 Value represents probability of kill of these resources within a circle of radius $R 2$

3 As in 2, given that radius $R 1$ intersects the target perimeter
4 Value is the radius of kill of these resources
5 Value is the radius of kill of these resources, given that radius R1 intersects the target perimeter

The last three values are a combination of a radius and a probability of kill.

6 Value is (1) the radius (times 1000) of an area within which the Pk is one-fourth that value of Pk within Rl , plus (2) the value of Pk within R 1 (thus 60080 , for example, specifies that Pk is 0.80 within Rl , and 0.20 in the annular area between R1 and 60 feet).

7 Value is the radius (times 1000) of an area within which the Pk is one-fourth that value of Pk within R 2 , plus the value of Pk within R 2

8 As in 7, given that radius R 1 intersects the target perimeter

Thus FLAG $=321475$ would imply that the six classes of resources are to be assessed by options $3,2,1,4,7$, and 5 , respectively, for the particular weapon type and target type for which it is listed.

Aircraft Shelters

No distinction is made between a direct hit and a near miss for aircraft shelters; the entry on the first EMD card is interpreted as the effective miss distance against aircraft in shelters with closed doors, and the entry on the tenth card is interpreted as the effective miss distance against aircraft in shelters with open doors. When shelters are handled with the Monte Carlo mode the entries on the second through ninth cards are used to assess losses to resources in a closed shelter in a manner consistent with other target types, as just explained. When the user does not identify specific resources within the aircraft shelters, and they are treated with the expected-value mode, the entries on the third through fifth cards are interpreted as the loss probabilities for personnel. AGE, and spare parts when a weapon strikes within the radius specified on the first card. In either case, the probabilities that aircraft are damaged in closed and open shelters, and the probability that the shelter itself is lost, are given by the entries on the twelfth through fourteenth cards, respectively.

CBU MUNITIONS

The entries on the first EMD card for CBU munitions specify the reliability of the dispenser and the length and width of a rectangular pattern of bomblets; the weapon-type number and the number of cards to be entered for these weapons are also specified. The user may enter up to seven supplementary cards with each EMD card for CBU munitions. The first supplementary card is blank, and the entries on the second through seventh supplementary cards are to be interpreted as the percentage of the six resource classes that would be expected to be lost if the bomblet pattern covered their location. Intermediate cards must not be omitted; e.g., if only equipment and TRAP losses were of interest, two blank supplementary cards would still have to precede the third card and two more precede the sixth card.

V. SAMPLE PROBLEM

The layout of the test base is shown in Figure 1. This base consists of a $200 \mathrm{ft} \times 7000 \mathrm{ft}$ runway, a parallel taxiway, two connecting taxiways, four shops, three aircraft parking ramps, six aircraft shelters, two vehicle parking areas, and four barracks. To examine the effectiveness of a bombing attack against this target complex with TSARINA, one first must describe the target elements and the attack in a common coordinate system. Each target is defined by its westernmost corner, its size, and its orientation;* the attack heading and the desired mean point of impact fix the attacks. For this illustration four aircraft are assumed to attack each of two points on the runway in an effort to "cut" it; in addition three aircraft attack each of the two sets of three shelters, and three aircraft attack the complex of four shops. Each attacker drops either 18 or 24 bombs with a range error probable (REP) and deflected error probable (DEP) of 300 feet and 150 feet, respectively. The intervalometers are set for stick lengths between 1500 and 2500 feet.

Several different types of resources are present in these facilities and are at risk to the attack. Varying quantities of personnel and AGE are in the four shops. In addition, several types of AGE are in the vehicle parking areas. Many off-duty personnel are in the barracks. Several of the aircraft shelters have TRAP and munitions stored internally.

INPUT

Figures 2 and 3 reproduce the card images needed to describe this sample problem and to control the assessment. For clarity, the control (CONT) card, the TSAR data (DATA) card, the target (TGT) cards, and the attack (ATT) cards are listed in order; the

[^8](2000

Hodel Operations are Specified vith the courrol card

The DATA card controls the interactions vith ISAR.

data	0	0	5	1	5	45		2		3	4	50		
	The tarqet data for				thesa	sample		calcalations				entered		nert.
TGT	-2500	-2000 7	7000	200	60	1								Rumeay
TGT	- 3150	-880 7	7000	83	60	1								maimiter
TGT	-3380	-450	500	275	60	5				1			2	SHOP *1
	C 1	120	C 1	4	33 C	2	2	10						
	c 1	218	C 1	3	35									
TGI	-2860	0	275	450	60	6				2			1	SHOP 2
	C 1	210	C 2	3	25 C	2	4	50	C	1	1	35		
TGT	-2390	159	425	300	60	5				3			1	SHOP 3
	C 1	118	C ${ }^{\text {1 }}$	2	22 c	1	3	40						
TGT	-2600	500	250	100	60	6				4	1	7		SHOP 14
TGT	-3100	-960	750	3 CO	60	4								danp a
TGT	- 1810	-243	750	300	60	4								RAMP B
TGT	-3240	-700	2250	200	60	4								Ranp c
TGT	-3650	0	900	300	60	7							1	pKG AREA
	C 2	180	C 2	2	30 C	2	3	25	c	2	4	10		
TGT	-2000	550	500	275	60	7							1	PKG ARPA
	c 2	120	C 2	2	50 こ	2	3	50	C	2	4	40		
TGT	-2950	-1240	50	850	60	3								x taxy 1
TGT	2840	250.	50	850	60	3								x Paxy 2
TGT	-200	930	50	$5)$	60	3								STUB 1
TGT	310	1015	50	50	60	3								STDE 2
TGT	670	1430	50	50	60	3								ST0B 3
TGT	1200	1539	50	50	60	3								Stue 4
TGT	1550	1963	50	50	60	3								STUs 5
TGT	2070	2050	50	50	60	3								STUP 6

The aircraft suelter iata are entered with TGT type cards, rather then $T G I 2$ type cards, since munitions and trap are stored in these facilties in this example.

IGT		-330	1070	75	125	60		2							1	SHEL	11
	c	4	12.7	C 5	2	2.9											
TGT		310	923	75	125	60		2							1	SHEL	42
	c	4	31.1	C 5	4	4.3											
tGi		530	1580	75	125	60		2								SHEL	13
Tit		1200	1435	75	125	60									1	SHEL	14
	c	4	33.1	c 5	4	4.3											
ist		1400	2093	75	125	60		2							1	SHEL	45
	c	4	10.7	$C \quad 5$	2	2.8 =	4		2	0.8	C	5	3	1.2			
TGT		2090	1950	75	125	60		2							1	SHEL	46
	c	4	22.8	C 5	3	1.2											

Various of f-duty personnal are in the barracks.

Fig. 2 - TSARINA input - control data and target information

Fig. 3 - TSARINA input - attacks and weapons data
ordering of cards for a given case is generally immaterial except that（1）the CONTrol and DATA cards should be entered first， （2）all supplementary cards（used with the TGT，ATT2，and EMD cards） must be listed immediately following the card that they supplement，and（3）the EQUI cards should be entered as a group． The END card concludes the input stream and specifies the end of the assessment；alternatively，a REDO card can be entered to end the input for one assessment and call for a new case in which the attack is changed，or both the target complex and the attack are changed．In this sample we have not used either the TGT2 or ATT2 type cards；the TGT2 card types could have been used for the aircraft shelters if resources had not been stored in these facilities．

A careful review of these entries along with a reading of Appendix A should lead to a full and rapid understanding of the various input requirements．The CONTrol card data specify， for example，that ten trials are to be computed，and the runway availability is to be based on a 65 feet $\times 4250$ feet minimum operating surface．Required repairs are to be assessed（the 1 in col．45）， but plots of the impact points are not to be generated（the 0 in col．48）．The DATA card specifies that TSAR is to simulate this attack at 5：45 am on the first day at base $\# 1$ ．Aircraft shelters， taxiways，and aircraft parking ramps are to be designated， respectively，as target types $\# 2, \# 3$ ，and $\# 4$ ．

As will be noted，the shop number has been entered in columns 53－54 of the TGT cards for the four shops，and the number of cards that are to be used to specify the resources that are associated with each target is specified in columns 68－70，except for shop $\# 4$. Since 100 percent of the on－duty type 非 personnel are in shop \＃4，columns 55－66 on the TGT card can be used to locate this resource． Shop \＃1 contains 20 percent of the type \＃1 personnel， 33 percent of the type $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ personnel，and 10 percent of the type $\# 2$ AGE．The larger vehicle parking area contains 80 percent of the type $\# 1$ AGE，and 30 ， 25，and 10 percent of AGE types $\# 2,43$ ，and $\# 4$ ，respectively．The target data for the aircraft shelters and barracks are listed next； 0.7
percent of the type $\# 1$ munitions and 2.8 percent of the type \＃2 TRAP are in aircraft shelter $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿱ 一 ⿱ 日 一 丨 一 力 八$ ；other shelters contain other quantities of munitions and TRAP．Eighty percent of the off－duty personnel are distributed in the four barracks，except for off－duty type 非 3 personnel who are located in the first three barracks．

The ATT cards in Figure 3 specify the attack headings， intended aim points，aiming errors，ballistic dispersion，number of weapons，bomb stick length，weapon type，and probability of arrival of the attacks．The EQUIvalence cards enter instructions for structuring the results to be transmitted to TSAR．The first entry specifies that type $⿰ ⿰ 三 丨 ⿰ 丨 三 一 1$ personnel casualties are not to be reported to TSAR．The second entry prescribes that the percentage casualties to TSARINA type $⿰ ⿰ 三 丨 ⿰ 丨 三 八$（ personnel are to be imposed on types \＃4 and \＃5 personnel in TSAR．The next entry specifies that the percentage losses sustained by type $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~(1 ~ m u n i t i o n s ~ a r e ~ t o ~ b e ~ i m p o s e d ~$
 TSAR；note that the＂equivalence＂list starts on the first EQUI card and is completed on the second．The last entry on the second card specifies that the casualty percentage sustained in TSARINA by the 非2 type TRAP is to be imposed on three TSAR types of TRAP： \＃1，\＃2，and \＃7．The third EQUI card specifies that the casualties sustained by the off－duty type $\# 3$ personnel should be applied to the $\# 3$ ，$\# 4$ ，and $\# 5$ off－duty personnel types in TSAR．（Casualties among other off－duty types will be controlled by the losses to the type $\# 1000$ personnel who were located in the barracks．）The last entry on the third EQUI card specifies that the percentage loss sustained by personnel type \＃2 should be imposed on the aircrews （i．e．，\＃101）at risk in TSAR．

The various weapon effectiveness data are entered with the EMD card and its supplementary cards．The first entry specifies that 14 cards are to be used to specify the weapon effects for this weapon．The second and third entries denote that the weapon is type $\# 1$ and that its reliability is 95 percent．The eight entries that follow are the radii of weapon effects against the eight target types found at the test base．The first of these specifies an effective disrupted radius of 20 feet on runways（target type 非）．

The same value is indicated for the other pavement targets: e.g., the taxiways, aircraft parking ramps, and vehicle parking areas (target types $\# 3$, $\# 4$, and $\# 7$). Larger radii are specified for structural effects against the buildings (target types \#5, \#6, and \#\#8).

The entries on the first supplementary END card specify the secondary weapon effects radii. The role and interpretation of these radii, and of the factors on the following six cards, are determined by the entries on the eighth supplementary card, as explained at length in Appendix A. For example, the values listed for the sixth type of target specify that personnel and munitions (or POL) that are within a radius of 100 feet, sustain 75 and 17 percent losses, respectively; i.e., their losses are governed by the first criterion. AGE and TRAP (the third and sixth supplementary cards) are governed by the second criterion, and 15 and 29 percent of these resources within 140 feet of a hit are lost. All spare parts within 140 feet of the burst sustain 24 percent losses, if the burst was within 100 feet of the target boundary (i.e., the third criterion). No assessment is provided for building materials in the sixth type of target.

The last three entries for the second target type--the aircraft shelters-are the three special factors that control aircraft and shelter damage estimates. The first two numbers are the probabilities that aircraft that are in the shelters at the time of the attack will be killed (1) if the shelter is buttoned up and a weapon strikes within the two foot radius entered on the first card, and (2) if the shelter door is open and a weapon strikes within the 100 foot radius noted on the tenth card. The last of these three entries specifies that there is a 12 percent chance that the shelter itself is destroyed, given a hit within two feet (R1) of the shelter walls.

The two-level cookie-cutter damage function is used for target type $\# 8$; when weapons fall outside the target, 80 percent of the personnel, equipment, and parts within the target are lost within 35 feet of an impact and 20 percent (one-forth of 80) of these resources are lost within 80,70 , and 60 feet from an impact, respectively.

If the weapon hits the target, 80 percent of the resources are lost within 43 feet of an impact, and 20 percent are lost within 100, 90 , and 80 feet, respectively.

OUTPUT

The initial TSARINA output provides a record of the input data. The first of these data, shown in Figure 4, provides a record of all resources, including the number and name of the target at which the resources are stored. These are followed by the formatted title block shown in Figure 5 that indicates the values for several of the key control parameters. The scheduled time of the attack, and an indication of any coordinate translation that was required, are indicated next. Full particulars on the targets, attacks, and weapon effects lata conclude the input data as shown in Figures 5 and 6. To distinguish aircraft shelters from other numbered facilities, a " 1000 " is added to the number for each shelter to avoid ambiguity.

TSARINA output for each trial is illustrated in Figures 7 and 8 , using the results for the eighth trial. As will be noted, both the runway and the main taxiway were hit; of the 26 bombs that affected the runway, six did not impact the runway itself, but hit close enough for the runway to be within the bomb's 20 foot radius of effectiveness. Two of the six aircraft shelters each received one hit; in one case the impact was outside the target, but within the 2 -foot radius of effectiveness. The fractional losses of any resources that were stored in each of these facilities are also noted.

The only hits that affect the taxiways, or the stub taxiways in front of the aircraft shelters, were on those stubs: stub $\# 1$ sustained a direct hit, and stub $\# 5$ sustained a near miss.

Three of the shops sustained several hits; the expected losses to the various classes of resources can be noted. For shop !t2, for example, even though 5 out of the 9 hits were external to the facility, damage would be expected to nearly 70 percent of the structure, and 58 percent of the personnel in that facility are estimated to be lost.

Fig. 4 - Listing of resource location data

*

 \sim_{n}^{∞}

:
응N N
응
-

r-dTy EARGET DATA 300
$7: 30$
720
$7 Y P 5$
75

WIO- ₹

Fig. 5 - Listing of control and target data

nuhber

40	,	1	5	45	r	,	0	0	,	0						
4	\dot{j}	?	\bigcirc	3	1	13	268	3	?	3	1	$?$	16	$?$	\bigcirc	0
40	,	,	,	;	1	,	+158	?	;	?	I	1073	15	$\stackrel{0}{0}$	0	0
40	,	,	,	,	1	1304	17	,	,	;	1	(1)35	$!$	$\stackrel{0}{0}$?	?
4	,	,	,	,	1	1003	12	\bigcirc	ก	\cdots	,	$1{ }_{0}$	\%			
4	,	,	,	,	,	1	,	\bigcirc	,	,	?	2	2	n	0	
4	S	?	3	?	?	3	$?$,	,	?	,	4	13	?	-	0
4	3	;	;	,	4	$\stackrel{1}{\square}$	$\stackrel{3}{3}$?	$?$?	4	131 134	0	\bigcirc	\%	?
48	,	,	,	,	4	3	1	?	,	,		134	\bigcirc			
4	O	?	,	?	5	?	1	,	3	\bigcirc	5	$!$	1	0	0	
40	$?$?	?	?		T	!	,	3	\therefore	5	4	,	\bigcirc	\bigcirc	3
46	,		,	,	9	4	$0{ }^{\text {a }}$	4	$1{ }^{1}$	2	\%	?	10	58	27	39
40	,	?	,	,	-	(s)	1	,	,	;	i	,	,	?	?	\bigcirc
4	\therefore	;	?	,	?	59	?	0	,	,						
	-		,		11	1	"	91	13	,	\cdots	:	5			
${ }^{3}$	-		0	J	8	,	18	100	100	64						

The fractional losses for all of the resource types present on the base are summarized in Figure 8; these results cumulate the fractional losses suffered by each type of resource at each of its locations. These same results, modified as required by the EQUI cards, and summary data describing the damage sustained by the runway, taxiways, aircraft shelters, and other facilities, are shown at the bottom of Figure 8 , formatted for transfer to TSAR. To interpret these card images, the reader should consult the instructions for preparation of Input Card Type $\# 40$ in the TSAR User's Manual.

The statistical results for the ten trials are presented in Figures 9 and 10. The first of these figures provides an indication of the fraction of trials in which at least one hit was sustained, as well as the expected number, and standard deviation, of hits. Comparable results are provided for CBU weapons, when they have been used. The results labelled "Bomb Coverage" are the expected fractions of the facility floor-space that are affected by the two coverage radii, R1 and R2. The average losses that are sustained at each target by the six classes of resources are listed on the right side of Figure 9. A summary of the runway closures and the required runway repairs is noted at the bottom of this figure.

Figure 10 presents the average losses sustained by each type of resource for the ten trials, along with the standard deviation of those losses. When TSARINA is used as a general-purpose damage assessment model, these statistical results are the primary output; they are not transferred to TSAR, since TSAR only uses the trial-by-trial results illustrated in Figure 9.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$$
\underset{\text { TORGFT }}{\substack{\text { Tar }}}
$$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Tpear init } \\
& \text { Atrarks mit }
\end{aligned}
$$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { AVERAGE HITS } \\
& \text { DER ATTACK }
\end{aligned}
$$} \& \multirow[t]{2}{*}{STI) DEV तF MIP} \& avg cell \& \multirow[t]{2}{*}{sungey ravepat} \& \multirow[t]{2}{*}{$$
\therefore \underset{Q_{1}}{40 \mathrm{ma}}
$$} \& \multicolumn{2}{|l|}{COVFRAGF} \& \multicolumn{4}{|l|}{k!il domaarilitifs} \& \multirow[t]{2}{*}{MATFQi} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{BLTG NK/NALE}}

\hline \& \& \& \& r.average \& \& \& P) \& depote \& 4,E \& PARTS \& AMMD \& TOAD M \& \& \&

\hline \multicolumn{16}{|l|}{tapget tyde. 1}

\hline 1 \& 10.0.) \& (a.R) \& 6.68 \& 0.3 \& ग.) \& 0.0 \& 1.0 \& .). 3 \& 0.9 \& 0.3 \& \%.0 \& 0.0 \& 9.0 \& \& Runiway

\hline , \& (.).) \& 21.4. \& 12.55 \& n. 3 \& 3.1 \& 0.0 \& 0.0 \& n.n \& ?.) \& 0.0 \& 9.9 \& 0.0 \& 0.0 \& \& malvixuy

\hline \multicolumn{16}{|l|}{tapget rypay a}

\hline 2 C \& 5, ${ }^{\text {a }}$. 7 \& J. 50 \& 0.53 \& 0.1 \& J.J \& 2.211 \& 0.983 \& 7.375 \& 9.319 \& 9.175 \& $0 . ? 30$ \& 0.735 \& 3.0 \& \& SMFL \#1

\hline $? 1$ \& 4). 3 \& 3.43 \& 3.57 \& 0.3 \& 3.3 \& 9.030 \& 3.87. \& 3.330 \& 0.e?) \& $\cdots .140$ \& 0.1 to \& 2.1 an \& 0.0 \& \& SHFt ${ }^{\text {a }}$

\hline 37 \& 31. ${ }^{3}$ \& 3.35 \& 3.48 \& 0.3 \& 0.7 \& 0.720 \& 0.986 \& 0.225 \& 0.105 \& 9.199 \& n. $1>0$ \& 0.135 \& 0.0 \& \& SHEL \#?

\hline 33 \& 4).1 \& 1.45 \& ก. 52 \& 3.3 \& 3.3 \& 3.130 \& 3.035 \& 3.390 \& 2.? \& 3.147 \& 0.160 \& ก.180 \& 0.0 \& \& SHEL 4

\hline 34 \& ?).? \& $3 . ? 9$ \& 3.42 \& 0.7 \& 3.3 \& 1..)39 \& -.95? \& 0.159 \& 0.119 \& 3.370 \& 0.080 \& n.090 \& 0.3 \& \& SHFL 5

\hline 75 \& 4.) \& 0.47 \& 0.52 \& 0.0 \& 0.7 \& 0.001 \& 0.842 \& 0.307 \& 0.327 \& 0.140 \& 0.140 \& $0.18 n$ \& 0.0 \& \& SHFL ${ }^{6}$

\hline \& * 0 .n7 \& 3.37 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multicolumn{16}{|l|}{Thaget thof m a}

\hline 13 \& 30.1 \& ? ? \& 0.42 \& 0.3 \& 1.0 \& 3.975 \& 3.0 \& 9.0 \& 0.1 \& n.n \& 0.0 \& 0.0 \& 0.0 \& \& x tayy z

\hline 14 \& 30.1 \& 9.43 \& 0.97 \& 0.3 \& 3.9 \& 3. 3 ar \& 0.2 \& 2.0 \& 0.3 \& 7.3 \& 9.0 \& 0.0 \& 0.0 \& \& Ster 1

\hline 15 \& 13.1 \& 3.17 \& 3.32 \& 0.0 \& ?.1 \& 3. 311 \& 0.0 \& J.0 \& U. 1 \& 0.9 \& 3.3 \& 0.0 \& 0.0 \& \& STIR 2

\hline $1{ }^{17}$ \& 3 3 .1 \& 9.37 \& 9.48 \& 0.3 \& 3.7 \& 3.751 \& 0.0 \&). 3 \& 3.7 \& 9.9 \& 7.0 \& n. 0 \& 0.0 \& \& STIR 3

\hline 17 \& 33.1 \& 3.3 \& 3.43 \& 2.) \& 3.) \& 9.314 \& 3.3 \& 3.7 \& 3.3 \& \cdots \& ?.7 \& 0.0 \& 0.7 \& \& STIA 4

\hline 18 \& 17.) \& 3.14 \& 3.7 \& -..) \& 9.1 \& Q.Jx \& ? ${ }^{1}$ \& 3.3 \& 2. 3 \& 3.0 \& 3.0 \& $n .1$ \& 0.1 \& \& ctur 5

\hline 15 \& 4J. 1 \& 3.50 \& 0.71 \& c.) \& 0.11 \& 1.312 \& ?.) \& \%. 3 \& ?.1 \& \cdots \& !. \& n.n \& 2.0 \& \& STIM 6

\hline \multicolumn{16}{|l|}{}

\hline R \& ?.) \& 3.3 \& १.) \& 0.) \& 3.1 \& 3.9 \& 3.13n \& 1.) \& , . \& 3.0. \& -. 3 \& 0.9 \& 0.0 \& \& famp ${ }^{\text {a }}$

\hline 9 \& 73.) \& 3.3 \& 7.75 \& 0.3 \& $\cdots{ }^{1}$ \& 3. $1^{1 / 4}$ \& J.14, \& J.) \& 3.3 \& 9.: 11 \& 0.7 \& 0.0 \& 0.3 \& \& RAMP C

\hline \multicolumn{16}{|l|}{rerret - rne * *}

\hline 3 \& 171.) \& 7.1, \& \%.19 \& 0.$)$ \& 3.) \& '...? \& 1)...1) \&).11 \& 2.19 \& 0.14* \& 0.085 \& 0.169 \& 0.01? \& \& ¢nГp 1

\hline 5 \& い.) \& 1.30 \& 4.47 \& 0.) \& `' \& 1.1000 \& 3.574 \& J. $\mathrm{Pa4}$ \& \cdots \& 7.18. \& 3.103 \& 9.1/h \& 3.017 \& , \& Sund ${ }^{\text {a }}$

\hline \multicolumn{16}{|l|}{tame - vorn ${ }^{\text {a }}$}

\hline * \& 1.1.) \& $\because 3$ \& 2. ${ }_{1}$ as \& 3.) \& $\because 1$ \& -1.17 \& 1.74: \& 2.ner \& $\cdots \cdots$ \& 1.37 \& 0.101 \& 0.437 \& 0.0 \& 7 \& sunp ${ }^{\text {a }}$

\hline * \& ' ${ }^{\prime}$ \& (•י) \& 1.4a \& \cdots, \& '. 1 \& $\cdots \cdots 1$ \& 3.46: \& 3. $\times 14$ \& 3.1) \& 1.174 \& 0.014 \& 0.773 \& 0.0 \& 4 \& ¢ 4 D

\hline \multicolumn{16}{|l|}{}

\hline 10 \& !.', \& 4.73 \& 4.7 ? \& 0.7 \& :., \& ?, ${ }^{\text {a }}$ \& 0.37 k \& 3.758 \& 9.n!? \& 0.021 \& 0.044 \& 0.090 \& 0.00n \& \& Pwr. ADFA

\hline 11 \& \%.) \& '.0: \& 1.", \& 3.3 \& '. 1 \& $\cdots 11=$ \& 1.355 \& \%.34, \& \& 3.315 \& 3.032 \& 0.766 \& 0.005 \& \& pkr, arfa

\hline \multicolumn{16}{|l|}{}

\hline 3 F \& 97.7 \& 3.13 \& \cdots \& 0.9 \& - \& $\cdots \cdots$ \& $\because 12 \%$ \& 2.17: \& 3.15 \& 9.16. \& 0.7 \& $n .0$ \& 0.0 \& \& bappacks elj

\hline 31 \& 17. \& \cdots \& 1. 3 \& 0.1 \& $\therefore 1$ \& U....' \& 3.74 \& 0.140 \& 0.1.', \& $1.11{ }^{3}$ \& 0.0 \& 0.0 \& 0.0 \& \& paprarks mij?

\hline 78 \& 91.1 \& $4{ }^{43}$ \& $?$ \& 0.$)$ \& 7. ${ }^{\text {a }}$ \& \cdots \& ..jon \& 3.114 \& -119 \& 2.104 \& $\bigcirc .0$ \& $n .0$ \& 0.0 \& \& RAPRACKS 23

\hline 3 \& 11.1 \& 9.10 \& 1.1 \& \%.) \& 7.1 \& $\therefore 1$ \& Q.1.0 \& 3.15 \& ก. 103 \& 1.:7 \& 0.0 \& n.0 \& 0.9 \& \& bafracks ${ }^{\text {a }} 34$

\hline \multicolumn{16}{|l|}{\multirow[t]{2}{*}{| |
| :--- |
| |}}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

$\begin{gathered} \text { fes SuFR }= \\ \text { CiASS } \end{gathered}$	troe	avipagf LOSSES of	sTD REV LIJSES •
USCPLE	1	32.830	14.394
	2	30.890	14.016
	3	27.849	16.968
	4	!?.390	7.46 h
	7	26.339	31.52A
	1090	13.263	6.385
	1.)3	15.730	11.599
410	1	1.080	0.932
	?	2.247	1.154
	3	7.03)	2.788
	4	13.130	5.206
A ven	1	0.150	2.227
	,	2. 520	3.548
	3	2.96)	3.824
TRAP	2	9.851)	0.883
	3	2.337	2.376
	4	1-5?	1.?61

Fig. 10 — Statistical results of resource losses

Appendix A
 DETAILED DESCRIPTION OF TSARINA INPUT

The basic input cards employed with TSARINA are:

CONT	control card
DATA	TSAR data card
TGT	target card; one per target
TGT2	aircraft shelter card; one per shelter when the expected-value mode is to be used
ATT	attack card; one per weapon delivery pass (or group of identical passes)
ATT2	alternate attack card
EMD	effective miss distance card; one for each weapon type
REDO	controls sequential cases
END	terminates overall computation

The ATT2 card is actually two cards in sequence and the EMD card may have up to sixteen\% supplementary cards. Each TGT card is followed by as many cards as are required to specify the resources located at that target. A detailed description of the entries for each type of card is presented on the pages that follow.

The general arrangement of data on all basic card types is similar; the card name is placed (left-adjusted) in the first four columns and the data are entered in the eleven 6 -column fields between columns 7 and 72. All data are read with an 16 format, i.e., they are integers, except that, as will be noted

[^9]from the descriptions defining data entry, two data are entered in certain fields of the CONT and DATA cards and on the supplementary target cards. Columns 5 and 6 are also used on several cards, as will be described. Furthermore, the name of the target complex being studied and a name for each target may be included in columns 73 through 80 of the CONT ard TGT: cards, respectively; any alphanumeric names are acceptable.

All linear dimensions should be in consistent units:*: (e.g., feet) and the target orientation and the attack heading eniries should be in degrees.

[^10]
CONT

The CONT card controls the mode of operation, the choice of random number generator, the number of trials (attack replications), and printout options; it also specifies the minimum clear length (MCL) and minimum clear width (MCW) for runway attack effectiveness calculations, and controls runway repair assessment. This card should be the first card to be entered.

Columns	Data Entry
1-4	CONT
6	If unity, program computes resource damage levels appropriate for entry into TSAR.
8-9	When 0 , the seed for the random number generator is the same for all runs. If greater than 0 , the seed is changed from run to run; if equal to -1 , the random number generator is locked out.
10-12	Number of target types to be entered.
13-15	Desired number of replications. Default is 1.
16-18	If 1 , descriptive data on the CONT and TGT cards may extend to column 88 , rather than be constrained to an $80-c o l u m n$ format.
19-21	Controls printout options as follows: If entry is: 5 Prints multiple trial statistics plus a condensed listing of hits by trial 4 Prints multiple trial statistics plus a condensed listing of runway status by trial
	3 Prints multiple trial statistics only
	2 All above plus runway results for each trial
	1 All above plus hit summary for each trial
	-1 All above plus all hits and target corners
	-2 All above plus all impact points
23-24	Controls printout options for resource damage:
	1 Damage fraction formatted only for user
	2 Damage fraction formatted only for TSAR
	3 Both formats

29-30	Normally set to zero; when initialized greater than zero, intermediate computationa: information is output for program tas: parposen If set to greater than \bar{i}, the rador nambe: generator is locked out. S... the fondean sou.. listing in Appendix (fou the pife.: o: c: bur values.
$31-30$	(lsed to test it t!a : Unk : ys ar , u.....
37-42	(lised to test i! the ramusis :at \because....;
45	hile: the eatry is 1,1 minimem mumb: of c:am
48	himb: in Pat:y : tor !misum to: a :ratua norion em: vides tor wet rean $1:$
49-5:	The dis:ance across the rumin il: $:$ ranway rectangle" is to be shittec an adequate section; the detamt vash
55-60	The distance along the runk that ihe rinaran ruinus rectangle is to be shifted in checting tor ade diate section; the default value is 250 .
73-80	A name can be entered here for the entire targe: compiex and it will appear in the heading of the output listing.

DATA

The DATA card controls the form of the output to TSAR, defines the t ime and location of the attack, and provides TSARINA the necessary resource identity data for communicating results to TSAR. This card is not required if the results are not to be used in TSAR.

Columns	Data Entry
1-4	DATA
5-6	If unity, statistical results are punched on cards for subsequent processing and reorganization using auxiliary programs.
12	Enter the number of trials for which damage data and resource loss data are to be stored for TSAR.
18	Enter the number of trials for which card copies of the damage data and resource loss data are to be punched.
24	Number of airbase under attack (as interpreted within TSAR).
29-30	Day of attack
35-36	Hour of attack
41-42	Minute of attack
47-48	Target type number assigned to aircraft shelters
;3-54	Target type number assigned to aircraft taxiways
39-60	Target type number assigned to aircraft parking ramps
21-06	Percentage of the alrcraft that are damaged by air attack that cannot be repaired.

Each TGT card designates the location, size, and orientation of a rectangular target.

Columns	Data Entry
1-3	TGT
7-12	The X-coordinate of the wasternmos: wormer os the target. Is the besternmo corner ot any tange does mot :all it. the thos quadena o: :ar X-Y all targes ary in the : an quacs translation, tagnis rot fall 32000×32000 aroa that area ame : So us: : : Whit
13-18	```The y-coordinat: of th: whetermer``` ```should be sprect:ed.```
19-24	east (or mort: from the roference oome: specified tat the two provole fin lin
$25-30$	(or east: iron the reformeo corner
31-36	Heading in degrees of the northeast for iorti.) heading boundary of the target (aiong the ammaion speaif:at in columns 19 to 24).
41-42	Target type. Targets may be grouped anto up io 10 (or 20) different categories with like vulnerabilities. This entry is used in conjunction with the effective miss distance on the EMD card. Target typ : 1 is restricted $: 0$ runways and taxiways that may be used for flight. operations; there can be at most 5 targets of this type. The user may specify other target types as aircraft parking ramps. laxiways, and aircraft shelters; if used with TSAR, the target type number selected to designate each of these target sets must be entered on the DATA card. For all other targets. structures with materiel of like vulnerability can be assigned a common target type number; if additional stratification in results is desired, targets of like vulnerability may be grouped under two or more target types.

48	If greater than zero, all hit locations will be saved and printed when the entry in column 24 of the CONT card is zero or less.
49-54	Facility number as understood in TSAR, if the target is a maintenance shop or a flight-line personnel assembly area (should not be used if the results are not to be used in TSAR).
55-60	Class of resource stored in the facility, if storage is restricted to 100 percent of one resource cl-s, or to 100 percent of one type of one resource ciass.
61-66	Type of resource, if only one type is stored in the facility (all types are inferred if blank or zero).
67-70	Number of subsequent cards used to describe the types and quantities of resourcos stored in this facility (use only when columns 55-66 are blank).
73-80	Target descriptions; coiumns 73-88 may be used if input is not restricted to 80 columns.

SUPPLEMENTARY TARGET CARDS

Each TGT card may be followed by as many supplementary cards as are necessary to define the rescurces that are located in that particular target. Each of these cards is read with a 5 X , $5(3 \mathrm{X}, \mathrm{I} 2, \mathrm{I} 5, \mathrm{~F} 5.0)$ format that provides for five descriptions of resource class, resource type, and percent at the target. Entry of the letter "C" (for class), preceding the resource class (in columns $7,22,37,52$, and 67). has been found helpful in reviewing the large data sets required to represent a complex airbase (see Figure 2).

Columns	Data Entry
9-10	Number identifying the resource class:
24-25	1 Personnel 5 TRAP
39-40	2 AGE and equipment 6 Building materials
54-55	3 Aircraft parts 7 POL
69-70	4 Munitions
11-15	Number identifying which type of the specified
26-30	resource class is located here.* If there is no
41-45	entry for "type", all types of the specified class
56-60	(that have not otherwise been specified) are
71-75	assumed to be present.
16-20	Percentage of the base stocks of the specified
31-35	type and class of resource that are located in
46-50	this target. Whole numbers are interpreted
61-65	as percentages; a decimal entry is required to
76-80	specify tenths of a percent. The output listing of resource storage data is in tenths of percent; e.g., 273 implies 27.3 percent.

[^11]These cards are used to input the location of aircraft shelters when resources are not tc be located in the shelters and the damage to these targets is to be estimated with the expected-value mode. The identification "TGT2" designates selection of this option. All aircraft shelters must be handled in a consistent fashion; i.e. their characteristics must either all be entered on TGT type cards, or all entered on TGT2 type cards. The inputs for the TGT2 cards are identical with the TGT cards for columns 7-48; entries in columns 49-80 are ignored.

ATT

The ATT card specifies the parameters of each weapon-delivery pass. Inputs required are the attack heading (measured from north in the coordinate system used to specify the targets), the desired mean point of impact (DMPI) for a single weapon or for the middle of a stick of weapons, the aiming error expressed as REP (range error probable) and DEP (deflection error probable), the ballistic error of the individual weapons, the number of weapons to be delivered in the pass, the stick length, the weapon type (related to the effective miss distance on the EMD card), and the probability of arrival at the target.

Columns	Data Entry
1-3	ATT
5-6	Total number of passes with identical characteristics; default $=1$.
10-12	Attack heading; degrees from north.
13-18	The X-coordinate of the DMPI of a single weapon or the middle of a stick of weapons.
19-24	The Y-coordinate of the DMPI as above.
25-30	The REP
31-36	The DEP
37-42	Ballistic dispersion in range of individual weapons (R-DISP).
43-48	Ballistic dispersion in deflection of individual weapons (D-DISP). Default value is R-DISP.
49-54	The number of weapons in the stick.
55-60	The length of the stick (the distance between the first and last weapon of the stick in the absence of dispersion).
61-66	The weapon type (provides reference to the appropriate effectiveness data). An entry is required (an integer from 1 to 10); otherwise hits will not be recorded.
67-72	Probability of arrival at target; default $=100$.

The ATT2 card should be used in place of the ATT card when the user wishes assistance with trajectory calculations. With this card the user expresses the attack in terms of speed, altitude, dive angle, intervalometer settings, etc., and a special subroutine converts these inputs to those demanded on the ATT card. The conversion procedure is the JMEM/AS Open-End Method Zero as outlined in the Users' Manual for JMEM/AS Open-End Methods, Wang Labs., Inc., Tewksbury, Mass., August 1974.

Both ATT and ATT2 type cards may be used in the same run; the order of entry is of no importance. When ATT2 cards are used, the input data will be reproduced as submitted, as well as being tabulated in the normal manner, after conversion.

Data input with the ATT2 procedure require two cards. The first card is labeled ATT2 in the first 4 columns and has input similar to that on an ATT card (all fields are read with an I6 format); a second unlabeled card is mandatory following each ATT2 card. The format for both cards follows. When these cards are used, all linear dimensions in the input data must be in feet.

Columns	Data Entry
l-4	ATT2
5-6	Total number of passes with identical characteristics; default $=1$.
13-12	Attack heading in degrees from north.
The X-coordinate of the desired mean point of impact	
(DMPI) of a single weapon or the middle of a stick	
of weapons.	

37-42	Ballistic dispersion in mils.
49-54	The number of weapons in the stick.
$61-66$	The weapon type.
$67-72$	Probability of arrival at target; default $=100$.

The data format for the second card of each ATT2 pair is as noted below (this card is used with a 6X, 9Io format). Typical ballistic data required for this card are noted in Table A-1.

Columns	Data Entry
7-12	Aircraft velocity (kn).
13-18	Release altitude of last bomb (ft).
19-24	Dive angle at release (deg)
25-30	Terminal velocity of a low-drag weapon, or the first leg of a high-drag bomb (ft/sec) (See Table A-1) (VT1 in JMEM).*
31-36	Terminal velocity of a cluster bomblet or a high-drag bomb (ft/sec) (See Table A-1) (VT2 in JMEM).
37-42	Probable error in estimating and correcting for wind effects (ft/sec).
43-48	Cluster opening time or fin opening time for a high-drag bomb (msec) (TD in JMEM).
49-54	Intervalometer setting (msec).
55-60	Dispensor intervalometer setting (msec) (0 for cluste

[^12]Table A-1

TYPICAL BALLISTIC PARAMETERS

SOLRCE: Users' Manual for JMEM/AS Open-End Methods, Wang Labs, Inc., Tewksbury, Mass., August 1974.

The EMD and supplementary cards provide information regarding weapon effectiveness against the several types of targets and the several classes of resources. The formats of the entries differ for point-impact weapons and for CBU munitions, and they differ between aircraft shelters and all other target types. Normally, each type of weapon will be represented by up to 17 cards (or 34 cards, if 11-20 target types are specified on the CONTrol card), although just the first card, the EMD card, could suffice for certain limited assessments.

For point-impact weapons (GP bombs or PGMs) the entries on the EMD card are:

Columns	Data Entry
1-3	EMD
5-6	Enter the maximum number of cards that are associated with each target type for this type of weapon.
8-9	Weapon type number
10-12	Weapon reliability (percentage)
13-18	R1 Radius of effectiveness versus target type \#1
$\begin{gathered} 19-24 \\ 0 \\ 0 \\ 0 \end{gathered}$	R1 Radius of effectiveness versus target type \#2
67-72	R1 Radius of effectiveness versus target type $\# 10$

The supplementary data for the several target types are located in the corresponding fields on the cards that immediately follow the first card. Definitions of the data to be entered on the EMD card and on the supplementary cards are noted below; somewhat different definitions apply for the target type that the user has designated as aircraft shelters, as will be outlined shortly.

```
Card
All Target Types
No.
(except shelters)
10
Rl Effective radius against target type
2 11 R2 Secondary effects radius
3 12 Personnel loss criteria
4 13 AGE loss criteria
5 14 Spare parts loss criteria
6 15 Munitions (and POL) loss criteria
76 TRAP loss criteria
8 17 Building materials loss criteria
9
Flag - Controls loss criteria interpretation
```

The data on cards 1 to 8 apply in the case of a near miss and those on cards 10 to 17 apply for a direct hit. If no data are entered for a direct hit, the near miss inputs are used; if any data are entered for a direct hit, only the values on the tenth through seventeenth cards are used. Null entries are interpreted as zero.

If 11 to 20 target types are treated, a second set of (up to 17) cards should be placed immediately after the first set described above: these cards are each read with a $12 \mathrm{X}, 1016$ format.

The appropriate loss criterion for assessing resource damage is controlled by the user and is communicated with the value of the control variable Flag, which is entered on the ninth card. The value of Flag for each target type is a 6 -digit code UWWYZ, where U, V, W, X, Y, and Z express the user's choices regarding the treatment of the six resource classes. Their values are defined from 0 to 8 as:

0 Ignore this class of resource
1 Value represents probability of kill of these resources within a circle of radius R1

2 Value represents probability of kill of these resources within a circle of radius R 2

3 As in 2, given that the R1 radius intersects the target perimeter.

4 Value is the radius of kill of these resources
5 Value is the radius of kill of these resources, given that the $R 1$ radius intersects the target perimeter

Values 6, 7, and 8 are a combination of a radius and a probability of kill.

6 Value is the radius (times 1000) of an area within which the P_{k} is one-fourth that value of $P k$ within $R 1$, plus the value of Pk within R1

7 Value is the radius (t imes 1000) of an area within which the Pk is one-fourth that value of Pk within R 2 , plus the value of Pk within R2

8 As in 7, given that the radius R1 intersects the target perimeter.

Thus, Flag $=321475$ implies that personnel, AGE, parts, munitions (or POL), TRAP, and building materials are to be assessed by options $3,2,1,4,7$, and 5 , respectively, for the particular weapon type and target type for which it is listed.

The use of the EMD cards is somewhat different for aircraft shelters. When the Monte Carlo mode is used to assess damage to these targets, the second through ninth EMD cards are interpreted the same as for any other target type. When the expected value mode is used, only the third, fourth, and fifth of these cards are used, and the entries are interpreted as the damage probability to personnel, equipment, and spare parts when a weapon falls within a radius Rl from the shelter. The other entries, noted below, are interpreted identically in either mode.

Card

Entry

1 R1 Effective radius against aircraft in shelters with closed doors.

10 R3 Effective radius against aircraft in shelters with open doors.

Probability of aircraft damage in a shelter with a closed door, when a weapon falls within a radius of Rl from the shelter.

13 Probability of aircraft damage in a shelter with an open door, when a weapon falls within a radius of R 3 from the shelter.

14 Probability the aircraft shelter is killed when a weapon strikes within a radius of $R 1$ from the shelter.

If the weapons are CBC type munitions, the following entries are used with the EMD and the supplementary cards:

Columns

Data Entry

1-3	EMD
5-6	Enter the total number of cards (maximum = are associated with the first 10 that types for this type of weapon.
8-9	Weapon type number
$10-12$	Weapon reliability (percent)
$13-18$	Enter CBC pattern length as a negative entry
$19-24$	Enter CBC pattern width as a positive entry

The supplementary cards permit the user to specify the expected percentage loss of various classes of resources when they are within the CBU bomblet pattern:

```
Card
No.
Entry
\begin{tabular}{ll} 
13-18 & Expected percentage loss at \#1 type targets \\
\(19-24\) & Expected percentage loss at \(\# 2\) type targets
\end{tabular}
    O
    O
    O
67-72 Expected percentage loss at #10 type targets
```

The first supplementary card is blank; the others are organized similarly to those for point-impact weapons. That is, the third through eighth cards apply to personnel, AGE and equipment, spare parts, munitions (or POL), TRAP, and building materials, respectively.

EQUI

The EQUIvalence cards are used to achieve consistency between the resources as defined in TSARINA and those defined in TSAR, when damage reports are prepared for transmission to TSAR. If the resources are defined identically in the data bases for both models, these cards are not required.

Resource equivalence data are entered using a specially formatted data string. The order of the data entered is: (1) the resource class, (2) the TSARINA resource type designator for which the equivalencies are defined, and (3) the TSAR designators of the resource types for which the percentage losses are to be equated to those of the designated TSARINA type. The numbers defining the resource classes are distinguished in the data string by addition of the number 5000 .

If several TSAR resources are to be assigned the same TSARINA damage percentage, each of their numbers should immediately follow the number for the equivalent TSARINA resource. If necessary, the designator list can be continued on a subsequent card image when the eleven data fields are full; the list is terminated either by a null entry or by another resource class designator. However, the equivalence card cannot be used to equate a TSARINA resource designation to a type $\geqslant 0$ resource to signify "all types not otherwise specified" for TSAR; to take advantage of that option, the TSARINA resource designation should itself be \#0 (see p. 13). If the first entry following the TSARINA designator is -1 , the TSARINA damage estimate for that resource is not reported to TSAR.

EQUI	5003	5	1	3	5	7	5003	6	2	4	6
EQUI	10	12	0								

In this example, the first, third, fifth, and seventh types of aircraft spare parts, as defined for TSAR, are to be assigned the damage level assessed for the fifth type of spare part in TSARINA; similarly, the second, fourth, sixth, tenth, and twelfth TSAR spare parts are assigned the damage level assessed for the sixth type of spare part in TSARINA.

EQUI 5001 7 -1

In this case, estimates of casualties suffered by type $: 77$
personnel are not to be reported to TSAR.
A final complication is introduced for differentiating between on-duty and off-duty personnel, and between assembled and unassembled munitions. TSAR personnel designators with values less than 1000 refer to on-duty personnel; off-duty personnel are specified by adding 1000 to their normal designator. Note that types 0 and 1000 refer, respectively, to all on-duty and off-duty personnel not otherwise specified. Unassembled munitions are designated by adding 100 to the nominal munition designation.

```
The REDO card is used to terminate the input for one case and initiate a new case with some or all of the previous inputs, as described earlier.
```

Columns

Data Entry
REDO
All targets will be retained unless the entry is unity (1); in that case a new set of targets and a new set of attacks are required.

The number of prior attacks to be retained when the targets are not changed. Each attack is numbered in the order in which it is entered; the attacks retained are selected from the top of that ordered list. All will be retained if there is no entry. Use a negative entry (-1) if none are to be retained.

An entry of unity (1) suppresses the input listings for targets and/or for attacks and weapons if no changes have been made in these data sets from the prior case.

An END card must be included at the end of all data entry cards.
$\frac{\text { Columns }}{1-3} \quad \frac{\text { Data Entry }}{\text { END }}$

Appendix B
 DEFINITIONS OF VARIABLES AND ARRAYS USED IN TSARINA "COMMON" STATEMENTS

Key Variables
ACLOSS The percentage of damaged aircraft that are not reparable.

ALLMC Switch; internally set to unity when aircraft shelters are handled with the Monte Carlo mode.

BASE The number of the airbase, in TSAR, at which the attack occurs.

CHANGE Switch; set to unity between cases when the target data are to be changed.

DAY The day, during the TSAR simulation, on which the air attack is presumed to occur.

HOUR The hour, during the TSAR simulation, during which the air attack is presumed to occur.

INL Distance along the runway the "minimum runway rectangle" is shifted.

INTSAR Switch; set to unity when results are to be generated for TSAR.

INW Lateral distance the minimum runway rectangle is shifted in checking for an adequate section.

ISAVE Switch; set to unity if resource damage results are to be generated for the auxiliary FORMATER program.

ITRIAL Number of the current trial.
KCBU Switch; set to unity if any weapons are CBUs.
KPTI Switch; set to unity if any weapons are the point-impact type.

KTEST Index controlling variety of debugging printout options.
LAST Switch; set to unity for last case.
LIST Switch; when set to unity, target andior attack input lists are suppressed when unchanged.

MCL	Minimum adequate length for required runway.
MCR	Switch; set to unity when runway availability is to be checked.
MCW	Minimum adequate width for required runway.
MINUTE	The minute, during the TSAR simulation, at which the air attack is presumed to occur.
MODE	Index controlling mode of operation.
MTT	Largest target-type number in the target array.
MXITEM	Maximum number of entries in the STOCKS array.
NA	Total number of weapon-delivery passes.
NAM	Maximum permissible number of weapon-delivery passes.
ND	Number of types of weapons in overall attack.
NHITD	Switch; set to unity when the expected-value mode is specified.
NJMEM	Number of weapon-delivery passes that require trajectory calculations.
NOAGE	Maximum number of entries in the AGE array; one greater than the size of the AGESTK array in TSAR.
NOEQUI	Maximum number of entries in the EQUIV array.
NOFAC	Maximum number of entries in the FACLTY array in TSAR.
NOMATL	Maximum number of entries in the MATERL array; one greater than the corresponding TSAR array.
NOMUN	Maximum number of entries in the AMMO array; 101 units greater than the MUNSTK array in TSAR.
NOPART	Maximum number of entries in the PARTS array; one greater than the corresponding TSAR array.
NOPEO	Dimension of PEOPLE array in TSARINA; equals ($2 *$ NOPEOP +2).
NOPEOP	Maximum number of entries in the PEOPLE array in TSAR.
NOPOL	Maximum number of entries in the POL array.

NOTRAP	Maximum number of entries in the TRAP array; one greater than the corresponding TSAR array.
NPLOT	Switch; set to 1 or 2 if runway impact plots are desired.
NPRINT	Index controlling results output.
NREDO	Switch; set to unity if an additional case is specified.
NREP	Switch; set to unity when repair requirements are to be assessed.
NSAVE	The number of weapon-delivery passes saved from one case to be used in the next case.
	Number of targets to be retained for a subsequent case.
	Number of weapon-delivery passes to be retained for a subsequent case.
NSM	Total number of aircraft shelters.
NST	Maximum number of targets for which hits can be stored.
NSTAT	Cumulative number of trials in which the minimum runway was available.
NT	Total number of targets entered using the TGT cards.
NT2	Total number of targets entered using the TGT2 cards.
NTM	Maximum permissible number of targets.
NTRIAL	Total number of trials specified.
PDAM	Switch; position controls output formats for trial-to-trial damage summaries.
PUNCH	When greater than zero, output for TSAR is card-punched.
RAMPS	Target-type chosen to designate aircraft parking aprons and ramps.
REPAIR	The minimum number of crater repairs required to clear the minimum area for flight operations.
SHELT	Target-type chosen to designate aircraft shelters.
TSAR	When greater than zero, output for TSAR is stored on disk.
TXWYS	Target-type chosen to designate taxiways.

KEY ARRAYS

All arrays 1 isted in labeled Common in TSARINA are defined below. The first seven arrays store data pertaining to AGE and equipment, munitions, building materials, aircraft spare parts, personnel, POL, and TRAP, respectively. The definitions shown below the array names are the same for all of these arrays.

AGE (I, J)
$\operatorname{AMMO}(\mathrm{I}, \mathrm{J})$
MATERL(I, J)
PARTS (I, J)
PEOPLE (I, J)
POL(I, J)
$\operatorname{TRAP}(I, J)$
$I=\quad$ Resource subcategory
$J=1 \quad$ Pointer to the location in the STOCKS array, where the first quantity of this resource is stored.

2 Cumulative losses at all targets where this resource is stored.

3 Square of the cumulative losses.
4 Pointer to the location in the EQUIV array, where the first equivalent TSAR resource category designations are stored.

ATT(I,J) Storage array for weapon-delivery data.
I Weapon-delivery pass number; numbered internally in order of entry.
$\mathrm{J}=1 \quad$ Heading (deg).
2 X-coordinate of desired mean point of impact.
3 Y-coordinate of DMPI.
4 Range error probable of DMPI.
5 Deflection error probable of DMPI.

```
    6 Dispersion in range (ground plane).
    7 Number of weapons released in pass.
    & Length of stick (in ground plane).
    9 Weapon type.
    10 Dispersion in deflection.
    11 Probability attacker arrives at target.
CBUHT(J,K) Impact coordinates of the centroid of the Jth CBU
        pattern.
    K=1 X-coordinate.
    2 Y-coordinate.
COV(L) Fraction of target L covered by one or more CBU patterns.
COV2(I,J)
    J = 1 Expected number of weapons that impact within R1
    feet of aircraft shelter "I".
    2 Expected number of weapons that impact within R2
    feet of aircraft shelter "I".
EMD(I,J,K) Weapon effectiveness data.
    I Weapon type.
    J Target type.
    K = 1 Effective miss distance R1 for a near miss.
    2 Effective damage radius R2 for a near miss.
    3 Personnel damage factor for a near miss.
    4 Equipment damage factor for a near miss.
    5 Aircraft spare parts damage factor for a near miss.
    6 Munitions damage factor for a near miss.
    7 TRAP damage factor for a near miss.
    8 Building material damage factor for a near miss.
```

9	Coded Flag defining the criteria for assessing resource damage.
10	Effective miss distance R1 for a direct hit.
11	Effective damage radius R 2 for a direct hit.
12	Personnel damage factor for a direct hit.
13	Equipment damage factor for a direct hit.
14	Aircraft spare parts damage factor for a direct hit.
15	Munitions damage factor for a direct hit.
16	TRAP damage factor for a direct hit.
17	Building material damage factor for a direct hit.
EQUIV(NOEQUI)	Used to store the resource designators to be used for reporting damage to TSAR.
FACLTY (I)	Used to store the TSAR facility number for those structures whose damage is to be reported to TSAR.
HIT ($\mathrm{I}, \mathrm{J}, \mathrm{K}$)	Storage array for hit locations on specified targets.
I	Ith of those targets for which hit data are to be stored.
$J=1$	X -coordinate.
2	Y-coordinate.
3	Weapon type.
K	Number of hits on the Ith target.
$\operatorname{HITR}(1, J, K)$	Storage array for hit locations on type \#1 targets (i.e., runways and taxiways).
$\mathrm{I}, \mathrm{J}, \mathrm{K}$	See $\operatorname{HIT}(I, J, K)$.
IR(N)	Switch; set to unity if the Nth weapon-delivery attacker fails to reach target.
IZ (I)	Designates the zone for each target (see subroutine TGTZON).

IZONE (K, J)	Denotes which of the ordered targets fall in the Kth target zone.
$J=1$	Lowest numbered target in the kth zone.
2	Highest numbered target in the Kth zone.
MHIT (K)	Target number of the kth target for which hit location data are to be stored.
MSTAT(J)	Storage array for accumulating trial results of runway availability tests.
$J=1$	Minimum number of repairs required to open a minimum runway.
2	Square of $\mathrm{J}=1$, above.
3-8	Not used.
MTYPE (I)	Index that specifies whether or not supplementary data are to follow the EMD card for weapon type I.
NAME ($\mathrm{I}, 4$)	Stores either a two-word or four-word alphanumeric name for each target.
I	Target number
$\operatorname{NCBU}(\mathrm{L})$	Number of CBU weapon patterns that cover all or part of target L .
NHIT (L)	Number of hits on target L ; by both point-impact and CBU weapons.
NRW (I)	Target number of the Ith runway entered.
OHIT (I)	Counts near misses for each target.
$P(L, K)$	Damage estimates for targets handled with the Monte Carlo mode.
$\mathrm{K}=1$	Expected fraction of target L that is within the radius R1 of point-impact weapons.
2	Expected fraction of target L that is within the radius R2 of point-impact weapons.
3	Fraction of personnel casualties expected at target L.

4 Fraction of equipment losses expected at target L.
5 Fraction of spare parts losses expected at target L.
6 Fraction of munitions (or POL) losses expected at target L.
7 Fraction of TRAP losses expected at target L.
8 Fraction of building material losses expected at target L .
P2 (L, K) Damage estimates for aircraft shelters.
$K=1 \quad$ Expected fraction of target L within radius $R 1$ of the weapon impacts.
2 Expected fraction of target L within radius $R 2$ of the weapon impacts.
3 Probability that a sheltered aircraft is damaged when the shelter door is closed.
4 Probability that the shelter is killed.
5 Probability that a sheltered aircraft is damaged when the shelter door is open.
6 Fraction of personnel casualties expected at target L.
7 Fraction of equipment losses expected at target L.
8 Fraction of spare parts losses expected at target L.
SHEL(N) The TSARINA-generated target number for the Nth shelter.
STAT (L, J)
Storage array for accumulating trial results.
L Target number.
$J=1$ Number of hits by point-impact weapons.
2 Square of $J=1$, above.
3 Trials with at least one hit.
4 Fractional coverage by CBC weapons.
5 Square of $J=4$, above.
6 Fractional target coverage within radius R1 of point－impact weapons．
7 Fractional target coverage within radius R2 of point－impact weapons．
8 Fractional personnel casualties．
9 Fractional equipment losses．
10 Fractional spare parts losses．
11 Fractional munitions losses．
12 Fractional TRAP losses．
13 Fractional building material losses．
STAT2（I，J）Storage array for accumulating trial results for rargets of a given type．
I
$J=1 \quad$ Fraction of the targets of type I that received at least one hit．
2 Square of $J=1$ ，above．
STOCKS（I，J）Resource storage location infomation．
$\mathrm{J}=1 \quad$ Target number at which resource is located．
2 The percent of the resource stored in this location （in tenths of percent）．
3 Pointer to next target with the same type of resource．
TGT（L，J）Storage array for target data．
L Target number；numbered internally in order of entry．
$J=1 \quad X$－coordinate of westernmost corner（\＃1）．
2 Y－coordinate of corner $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 1$.
3 X－coordinate of corner $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2．
$4 \quad Y$－coordinate of corner \＃2．
$5 \quad X$－coordinate of corner $\geqslant 3$ ．
$6 \quad Y$-coordinate of corner $⿰ ⿰ 三 丨 ⿰ 丨 三 3$.
7 X-coordinate of corner $\$ 4$.
$8 \quad$ Y-coordinate of corner $\$ 4$.
9 Heading of northeast target leg.
10 Target type.
11 Switch; hits stored when reset to unity.
12 Dimension of northeast target leg.
13 Dimension of southeast target leg.
14 Facility number of target.
TGT2 (L, J) Storage array for aircraft shelter data.
L Target number; numbered internally in order of entry.
$J=1 \quad X$-coordinate of westernmost corner (\#1).
2 Y-coordinate of corner \#1.
3 X-coordinate of corner $\# 2$.
4 Y-coordinate of corner \#2.
5 X-coordinate of corner \#3.
$6 \quad \mathrm{Y}$-coordinate of corner \#3.
7 X-coordinate of corner \#4.
8 Y-coordinate of corner $\$ 4$.
9 Heading of northeast target leg.
10 Target type.
11 Switch; hits stored when reset to unity.
12 Dimension of northeast target leg.
13 Dimension of southeast target leg.
14 Facility number of target.

TO(I, J) Target order array in which targets are ordered according to increasing values of the sum of the coordinates of the western corner.

I Ith target in the ordered array.
$J=1 \quad$ Value of $(X+Y)$ for the 1 th ordered target.
2 Number of the target as initially entered.
hPNREL(I) Reliability of heapon type 1.

Appendix C

TSARINA SOURCE CODE AND COMMENTS

241.
242.
242.

244 .
245.
245.
246.
246.
248.
249.
250.
251.
252.
253.
255.
256.
257.
258.
259.
260.
261.
262.
263.
254.
265.
266.
266.
267.
267.
259.
270.
271.
272.
273.

274
275.
276.
277.
278.
279.
280.
281.

2 月2.
283.
284.
285.
286.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
297.
$? 20$.
3) 1.

3 ? 2.
303.
304.
305.
06.
37.
338.
399.
319.
311.
312.
313.
314.
315.
316.

SUBFOUTINE INPUT (CASE, MHPN, NEWTGT, NTSAF, NPUNCH)
IMPLICIT INTEGER *2 (A-Z)
INIEGER * 4 DAIA, LABEL,AN, WORDS,NSASE1,NBASE2,AID
INTEGER * 4 DIM,DIM2,MSTAT
INTEGER * 4 MXITEM, NOPEO, NOAGE, NOPART, NOMUN, NOTRAP, NOMATL, NODOL
INTEGER * 4 PEODLE,AGE,PARTS,AMMO,TRAP,MATEEL,POL,NOEQUI, NOPEOP

- \quad-HE FOLLOUING JCL INSERTS TSARINA'S COMMON "BASIC"

DD *, DCB $=$ BLKSIZE $=800$
COMMON/STATS/STAT(5CO, 17), MSTAT(8), NTRIAL,ITRIAL,NSTAT
COMMON /CONTRL/ NREP,NELOT, INW, INL,CHANGE,NSAVE,LTST, NJMEM
COMMON /CBOHIT/ CBUHT(2CE,2). IR(59), KCBU, KETI
COMMON /OUTPUT/ TSAR, PUNCH, NBASE!, NBASE2
THE DATA STORAGE ARRAYS (AND DIMENSTONS) FOR THE RPSOUPCE STOXAGE LOCATION DATA ARE FILED IN LABELLED CCMMON STORES.

SEE THE MAIN RJUTINE POK DIGENSIONING INSIRUCTIONS
COMMON /STORES/ MXITEM, NOPEO, NOAGE,NOPAFM, NOMDN, NCTPAF, NOMATI,
NOPOL, NOEQUI, NOPEOP, PEOPLE (292,4), AGE (121,4), PABMS (4N1,4).
 EQUIV (405)

COMMON / LISTER/ ISAVE
DIMENSION LABEL(1J), DIM (5AO, 2), DIM2(19C,2), DATA(11), WOEDS(4)
X

X
'DATA'.'REDO'.END!/
$N S=0$
$X M I N=0$
XMIN $=0$
YMIN $=0$
WJMEM $=$ n
LAST
LIST1 $=0$
LIST1 $=0$
LIST2 $=0$
LIST2 $=0$
ITEM $=0$
PLAG $=0$
IF (CASE.FQ. 1) NAMES $=2$
NRMAX $=0$
NAO $=1$
IF (NREDO EQ. O) GO TO 2
C SER NOREAT LABEL 48°
IP (NEHTGT.EQ. O) LISTI = LIST
IP (NSAVE.GI. O) NA = NSAVE
IP (NSAVE.LI. O) NA $=0$
NAJ $=\mathrm{NA}+1$
IF (NSAVE.SQ, 0) LIST2 = LIST
NSAVE =
CONTINUE
NAEDO $=0$
READ (5, 101) AN, NEYPE, (DATA(I), $\pm=1,19)$ (NCPDS(Z), I= , NAMCS)

ON AN ATTACK CARD. THE ATTACK WILL BF FEPEATRD SO THAT OHEED WIII
BE THAİ POTAL NUMBER OF ATTACKS WZTH THE STAMED GHARACTEZTSETCS.
(ONE ATTACK IS ASSJMED SP THPPEIS NC ENTEY.)
THE ENTRY FN こOL 6 OU THE EMD CAFDS AVD COLUMNS 67-7n OF

IF (AN EQ. LABEL(1)) GO TO 1?
IP (AN - EQ. LABEL(2)) GO TO 15
IF (AN.EQ. LABEL(3)) GO TO 2?
IP (AN . EQ. LABEL(4)) GO TO 26
IF (AN .EQ. LABEL (5)) GO TO 3n
(AN.EQ. LABEL (6)) GO TO 36
(AN.EQ. LABEL(7)) GO $504 n$.
(AN.EQ. LABEL(B)) GO $=045$


```
    1 0
    G0 % % 6
    NT = NT + 1
    I% ((NI -EQ. 1).AND.(NERINT,LE. 1)) WPITE(6.129)
        F (NEWTGT - EQ. O) GO TO 170
        LIST1 = 0
        If (NT .GT. NTM) GO TO 123
        D) 11 I = 1,2
        DIM(NT,I) = DATA (I)
        IF (DATA(1) -LT. XMIN) XMIN= DATA(`)
        IF (DAFA(2) ,LT, YMIN) YMTN= DATA(2)
        D) 13 I = 3.4
        PGZ(NT,I+9) = DATA(I)
        D) 131I = 5.7
        131 TGT(NT,T + 4) = DATA (
        TGT(N2,14)= DATA(Y)
        If (DATA(5) .NE. SHELO) GO =0 133
        NS = NS + 1
        GT(NT,14)= 100? + N5
        SHEL(NS) = NT
```



```
        014 I = 1,NAMES
        NAME(NT,i) = WORDS(i)
        IF (1DATA(9)+JATA(11)) .EQ. `) 3C %. 1+2
        IF (NPRIN= .LE, 1) WRI=E(6,122) NT, (NAME(NT,I),I=1,4,
        * DA:A(1), JATA(2)
        ITEM = TTEM + 1
        F (EEEM .GT. MXITEM) GO =0 16?
    &CAFDS = DATA(11)/100
    IM (NCAEDS .EO. O) GO PO 141
    SUBROUTINE STOPE OFGANIZES EESOJRCE DATA FO?
    FACILITIES W=TH SEVERAL ITEYS.
    CALL STORR( ITEM, NCAKDS )
    GJ TO }14
    WITH ONLY ONZ ClasS and ONE TYPE (OR ALl typfs Of A ClasS),
    ENZRY FILE IN SUBROUTINE STORE IS USED.
    141 STOCKS (ITEM,1) = NT
            STOCKS(ITEM,2)=1000
            CALL PILE(ITEM,DATA(9).DATA(19) )
    142 CONTINUE
            GO TO 6
    15 NT2 = NT2 + 
            IF (NEWTGI . EQ. O) GO TO 170
            IF (NEWTGT.EQ.ONO GO TO 170
            DO 16 I = 1.2
            DIM2(NT2,I) = DATA (I)
            IF (DATA(1) .IT. XHIN) XBIN = DATA(1)
            IP (DATA(2) .LT. YMIN) YMIN = DATA(2)
            DO 17 I = 3,4
            T3T2(NT2.I+9) = DATA(I)
            DO 18 I = 5.7 = DATA(I)
            EGT2(NT2,I + 4) = DATA (I)
            GO TO 6
            NA = NA + 
            LIST2 = 0
            IP (NA.GT. NAM) GC TO 130
            IP (% NA I GT. NA
            DO 22 I = 1,6
            ATT(NA,I) = DATA(I)
            ATT (NA,10) = DATA(7)
            IF (DATA(7) EQQ. 0) ATT(NA,10) = ATE(NA,6)
            IF (DATA(11) .EQ. 0) DATA(11)=905
            AIT(NA,11)= DATA(11)
            DO 24 I = 7,9
            ATT(NA,I) = DATA(I+1)
            HTYPE = MAXO((NTYPE-1).0)
            IP (NTYPE.EQ, 0) GO TO 6
            GO TO 20
26 HA =NA +1
            LIST2=0
```

```
    IF(NA.GT.NAM) GO =O 130
    IP (DATA(11) EQ, 2) DATA(11) = 1.9
    CALL JBEAC(NJHEM,DATA,NA,KTESI)
    DO 27 I = 1.11
    27 ATI(NA,I) = DATA(I)
    28 NTYPE = MAXC((NTYDE-1),0)
        IF (NTYPE.EQ. O) GOTO 6
        NA = NA + 1
        DO 29 I = 1,19
        ATT(NA,I)=AIT((NA-1),I)
    GO TO 28
        ND=ND + 1
        IP (NR .EQ. )) NR = 1
        IF (NR.GT. NRMAX) NSMAX = NR
        CBU = C
        IP (DATA(2) ILT. 0) CBU = 1
        M= DATA(1)/1000
        IF (M .GT. 10) GO TO 140
        IP (M .GT. MHPN) MWPN = M
        AID= DATA(1) - 10OJ*M
        IF (AID.EQ. O) AID = 100
        WPNEEL (M) = AID/10.O.
        MTYPE(H)=NR
        CARDS (M) = TM
        DO 32 N = 2.11
        EID(M,N-1,1)= DATA(N)
        DO 34 NC = 2, Na
        QEAD(5,114) (EMD (M,N,NC),N=1,1))
        I: (TT.EQ. 1) GOTO 6
        NF=CBU + 1
        DO 35 NC=NF,NP
        RZAD(5,114) (EMD(M,N,NC),N=11,20)
        GO TO 6
C
STORE gESOURCE EQUIVALENCE DATA
    36
C
C
            DO 39 I = 1.11
            IF ((DATA(I) EQ. 0).AND.(FGAG .GT. n)) GO TO 29
            IP (DATA(I),GI. 5000) GO O 38
            IP (DATA(I),GT. 5000) GO
    CALL SAVE(CIASS, TYPZ, DATA(I))
            PLAG = PLAG + 1
            GO TO }3
            TYPE = DATA(I)
            GO TO 39
            CLASS = DAIA(I) - 5000
            TYPE=?
            FLAG = 0
            CONTINUS
            GO IO }
C
TSAS INPUTS ARE PREPARED AND LISTED IF ENTSAQ IS SE# OO UNTTY.
40 INTSAR = NTYPE
            MODE = DATA(1)/1200
            ETGT = DAIA(1)-120C*MODE
            IF (TTGT.LM. л) TTGT= -TTGT
            F (TTGT.LW. 的 TTGT = - TTG
            IP (TTGT.LE. 10) TI= = 1
            IP (TTGT,GT, 10) TT = 2
            AID = DATA(2)
            NTRIAL = AID/100)
            AID = ITD - 10J0*NmRTAL
            AID=AID-19JO*NTRIAL
            IF (NTRIAL.LT, 2) VTRIAL
            NPRINT = DATA (3)/1000
                    PDAM = DATA (3) - 1000*NPEIN*
            IF (PDAM.LI. )) PDAM = - ODMM
            KTEST = DATA(4)
            CALL SAVER(C,KTEST,MAXLOC)
            MCP=0
            IP (DAMA(5) .GT. O) MCR = 1
            HCL = DA:A(5)
            ACL= DA:A(5)
```



```
545.
546.
546.
547.
548.
549.
559.
551.
552.
554.
555.
557.
557.
558.
559.
560.
561.
C PLACE A-1" IN THE TENTH ROW OF EACH COLUMN FOQ THOSE TAPGET
C TYPES POR WHICH THE EPFECTIVENESS WITH INTERNAL AND EXTEDNAI HIMS
IS NOT TO BE DISTINGUISHED.
    LHT \(=10\) * mT
        \(5054 \quad \mathrm{H}=1.1 \mathrm{C}\)
        IF (BTYPE (M) EEQ. O) GO TO 54
        DO \(54 \quad N=1, L H T\)
        IF (N E EQ. SHELT) GO TO 54
        IF (NAMAX LE. 9) GO TO 53
        DO 51 I \(=1\), NRMAX
        ROW = NRUAX - I + 1
        IF ( \(\mathrm{MDD}(\mathrm{M}, \mathrm{N}, \mathrm{ROW}) \quad \mathrm{NE}, 0) \quad \mathrm{GO}\) TO 52
        IP (BOH.EQ. 9) GO TO 53
        51 CONTINOE
    52 IF (ROH.EQ. 9) \(\operatorname{BMD}(\mathrm{M}, \mathrm{N}, 10)=-1\)
    GO TO 54
    53 EMD (M,N,10) \(=-1\)
    54 CONTINUE
\(C\)
\(C\)
NOTZ WHEA SHELTERS ARE TO BE HANDLED WITH THE MONTE
CARLO MODE RATHER THAN THE EXPECTDD VALOP MODE.
    ALLHC \(=0\)
    IF ((SHELT.GT. O).AND. (NT2.EQ. O)) ALIMC = 1
    NSM \(=\) NS
C
C
572.
573.
574.
575.
576.
576.
577.
577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
586.
58.
588.
589.
589.
589.
590.
590.
591.
591.
592.
592.
594.
595.
595.
596.
597.
598.
599.
650.
650.
651.
631.
632.
602.
603.
6.35 .
696.
696.
697.
698.
638.
610.
            CALL SAVER(1,KTEST,MAXIOC)
            MRITE (6.128) ITEM. MAXLOC
PRINT OUTPOT HEADING BLOCK
    IP (NEEDO EQ. O) LAST = 1
    IF (MODE EQ. O) CALL RSTART(7)
    UPITE (6,111) NTRIAL, NPAINT, PDAH, MODE, NCL, INL, MCH, INH,
    \(\mathbf{X}\)
```



```
        IF ( \(N B A S E 1\) EQ. O) AND. (NBASE2.EQ. O)) GO TO 55
            WaITE (6.100) NBASE1. NBASE2
    CONTINOE
```



```
            IP (NPRTN: LE. \(\quad\) ) WRIME 6,10
IP (NEWTGT.EQ. O) GO TO 65
C TO FACILITATE THE PROCEDUEE OUTLINED IN SUBROUTINE GGTZON,
    THE X-Y COORDINATE SYSTEM IS TRANSLATED SO THAT ALL TARGEMS
    AKE IN THE PIRST QUADRANT, WHEN VECESSAPY.
            \(X M=(X H I N-999) / 1000\)
            \(X_{M}=(X H I N-999) / 1000\)
\(Y M=(Y M I N-999) / 10 C 5\)
            \(X H=-1000 \% X M\)
            \(X H=-1000 * X H\)
\(Y M=-1000 \# Y H\)
            \(X M=-X M\)
\(X M A X=32000-X M\)
\(Y H A X=320 C O-Y M\)
            \(Y H A X=320 C J=Y M\)
    56
            \(\operatorname{IP}((X X+Y M) \quad G T\). \() ~ W K I T E(6,123) \quad X M, Y M\)
            HTT \(=0\)
            IP (NT.EQ. O) GO TO 63
            \(\begin{array}{lll}I P & \text { NT } & \text { EQ. N1 } \\ \text { DO } & 59 L=T, N T\end{array}\)
            DO 59 I = i.NT GO TO 63
            IP (IGT(I,10) GT. MTM) \(M+T=T G I(I, 1 G)\)
    59 CONTINOS
            DO \(62 \mathrm{M}=1 . \mathrm{MTM}\)
            PLAG \(=0\)
            DO \(62 \mathrm{I}=1, \mathrm{Nr}\)
```



```
            IF (FLAG.EQ. 1) GO TO 6:
IF (NPRINT.LE. O) WRITE \((6,132) \mathrm{M}\)
            IP (NPRINT:LE, 0) WRITE \((6,132) \mathrm{M}\)
            PLAG \(=1\)
```



```
                    611.
612.
    IF A TARGET IS OUTSIDE THE ALLOWED \(32090 X 32 \cap O C\) AREA IT
```



```
            \(\begin{array}{llll}I P(D I H(I, 1) & G T \cdot X H A X) & D I M(I, 1) & =X M A X \\ I P(D I H(I, 2) & G I, ~ Y M A X) & D I M(I, 2) & =Y M A X\end{array}\)
            IP (DIM(I,2) GI. YMAX) DEA(I,2) \(=Y\) MAX
            WRITE (E, 124) I
    61 TGI(I,1) = DIM(I, 1) \(+X M\)
            \(\operatorname{TGI}(I, 1)=D I M(I, 1)+X M\)
\(\operatorname{TGT}(I, 2)=D I M(I, 2)+Y M\)
```

622.		¢P（NPEINT．LE．0）WRITE（6，112）I，（IGT（2，3），J＝1，2），
623.		
624.		（ $\mathrm{MAME}(\mathrm{I}, \mathrm{L}), \mathrm{L}=1, \mathrm{NAMES})$
625.	62	CONTINUE
626.		IF（LIST1．EQ．1）GO TO 65
627.	63	IF（NT2－PQ O）GO TO 65
628.		HRITE（6，115）
629.		D0 $64 \mathrm{I}=1, \mathrm{NT} 2$
630.		$\operatorname{TGT2}(\mathrm{I}, 1)=\operatorname{DIM} 2(I, 1)+X M$
631.		TGT2（I，2）$=\operatorname{DIM} 2(\mathrm{I}, 2)+\mathrm{YM}$
632.	64	WQITE（6，113）I，（TGT2（I，J），J＝1，2），（TGT2（I，J），J＝12，13）．
633.		（TGT2（I，J），J＝9，11）
634.	C	
635.	65	NEWTG\％＝0
636.		IF（LIST2．EQ ． 11 GO 2095
637.		WPITE（6，104）
638.		KPII $=0$
639.		D0 $68 \mathrm{I}=\mathrm{NA}$ ，，NA
640.		$\operatorname{ArP}(1,2)=\operatorname{ATT}(1,2)+X M$
649.	68	$A T T(I, 3)=A T T(I, 3)+Y M$
$6+2$ ．		DO $70 \leq=1$ ，NA
643.		IP（EMD（ATT（I，9）．1．1）．GE．O）KFワI＝ 1
644.	70	
64\％．		－ATI（I，11）
046.		
6－7．		WSTTE（6，105）（T， $\mathrm{T}=1.10)$
6.4.		D） 7 O $\mathrm{O}=1$ ，MWE！
54．		Ra＝MTYEミ（\％）
ro\％．		IF（4．Ev． 21 GJ 10 9）
6 \％ 1.		
\therefore		
b－ c	\because	（）ッマさxリ．
$\cdots 4$.		
\％ 5.		CBy＝ 0
65%		YP（EMD（1，1，1）．LT．O） $\mathrm{CBL}=1$
657.		$N \mathrm{P}=\mathrm{CSU}+9$
658.		－ 3 \＃ TE （5．127）
－59．		
6 F 0.	93	continue
601.	95	CONTINJE
662.	$こ$	
663.	－	
664.	c	
665.	c	but fof a maximum op pive targeis of type 1.
666.	C	
607.		$\mathrm{Pm} \mathrm{x}=0$
668.		Do 99 I $=1 . \mathrm{NT}$
669.		If（TGT（I，10）．NE．1．）G0 2099
670.		NさX＝NTX＋ 1
671.		IP（NIX ．GT．5）Go vo 15？
672.		NRW（NTX）＝I
673.	99	CONTINUE
674.		If（KTEST ．LT．8）aETURN
675.		HRITP（6，112）NAMES
676.		WeITE（6，118）（（STOLKS（I，J）， $\mathrm{I}=1,39), \mathrm{J}=1.3)$
677.		WRITE（6，118）（ $(\operatorname{PEOPLE}(\mathrm{I}, \mathrm{J}), \mathrm{I}=1,30), \mathrm{J}=1,4,3)$
678.		WRITE（6，118）（（PEOPLE（I，J），I＝192，131），J＝1，4，3）
679.		GRITE（6，118）（AGE（I，1）， $1=9.30$ ）
680.		WRITE（6，118）（PARTS（I，1），$I=1,39)$
681.		पRITE（6，118）（AMMO（ 1,1 ），$I=1,26$ ）
682.		$\operatorname{WRITE}(6,118) \quad(\operatorname{TRAP}(\mathrm{I}, 1), I=9.26)$
683.		WRITE $(6,118)$（MAT3RL（ 1,1$), I=1,26)$
684.		HRITE（6．118）（POL（ 1,1$), I=1,10)$
635.		WRITE（6，118）（EQOIV（I）P $I=1.63$ ）
686.		IF（KTEST．GT．15）STOP
687.		REMURN
688.	c	
689.	12 C	MRITE（6，108）
690.		STOP
691.	133	Weite（E，ic9）
692.		STOP
693.	140	HRITE $(6,110)$
694.		STOP
695.	150	WRITE（6，916）
696.		STOP
697.	165	WRITE（6，147）
69 R ．		Stop

$\begin{aligned} & 699 . \\ & 700 . \end{aligned}$	170	$\begin{aligned} & \text { WRITE }(6,119) \\ & \text { STOP } \end{aligned}$
731.	$こ$	
7 72．	100	
703.	101	PJPMAS（ $44.22,1116.484)$
714.	102	
705.		XM NELIMB SELIMB ANGLE TGTTYPE STOPF BIDG NAP。
706.		X／／）
707.	103	PORMAT（＇．I4，2X， 1119 ）
738.	104	POKMAE（＇＇，／．20X，＇ATMACK DAPA＇．／＇，NUMBEF HDG X－DMPT
709.		$X \quad Y$－DAPI DEP R－DISP D－DISP NO KPVS ITSG
710.		XTH WPN TYPE ARRIVAL＇．／．／）
711.	105	
712.		
713.		$\mathrm{X} / 0 / \mathrm{\prime} / 1)$
714.	106	FORMA ${ }^{(100.15,7 X, P 5.3,10 工 1 C) ~}$
715.	107	FORMAT（＊＇，18X， 1 IJI 10 ）
716.	108	POFMAI（＇${ }^{\prime \prime} /^{* * * * * * ~ S O O ~ M A N Y ~ T A R G E T S ~ H A V E ~ B E E N ~ S P E C I P I P D ~ * * * * ') ~}$
717.	109	
718.	110	FORMAT（＇＇／，＇＊＊＊＊＊TOO MANY TYPES OF UEAPONS HAVE BEEN＇，
719.		X＇SPECIFISD＊＊＊＊＊！
720.	111	PORMAI（11＇， 130 （1＊＇）\％
721.		
722.		X 37X，＇BASED ON THE AIDA MODEL OF AIGBASt［AMASE ASSESSMENT，／，
723.		X 39X，＇DEVELOPED BY D．E．ЗMERSON AT THT EAND CORPORATYON＇，
724.		
725.		X＇MODE＇，T2，
720.		
727.		
723.		X I3．／／，22X，＇IN THE TSAR SIMOLATION，THIS ATTACK AND DEMAG\％，
729.		
730.	112	FIRMAI（ ${ }^{\prime}$＇， $\left.54,4 \mathrm{X}, 8 \mathrm{I} 10,2 \mathrm{X}, 4 \mathrm{~A} 4\right)$
731 。	113	FORMAT（＇＇，I4，4X，7I10）
732.	114	PORMAT（ $12 \mathrm{X}, 10 \mathrm{~L} 6$ ）
733.	115	
734.	116	
735.		X＊SEECIFIED＊＊＊＊＇）
736.	117	
737.		x＇DESCFIPTORS＊＊＊＊＊＊）
738.	118	
739.	119	POPMAT（＇0＇． ＇TARGEZS MAY NOT BE CHANGED PRCM CASE TO CASE＇$^{\prime}$
74 \％	129	
74 \％		X 5X，${ }^{1}$ NAME＇）
742.	122	
743.	123	POBMAI（＇＇，ALL tanget location dimensions wppr ivcprason ay＇，
744.		X I6．＇IN PHE X－DIMENSION AND＇IG，IN MHF Y－ITMENSEON＇，／／）
745.	124	FJRMAT（＇O＇．ONE OA BOTH DIMENSIONS OP TAEGET＊，こ4，WE？＇，
746.		X＇MODIPIED TO PLACZ IHE \triangle APGE：A\％THE EDGE OF THE ALL＾UZD APEA＇）
747.	127	PORMAこ（＇O＇）
748.	128	PORMAI（＇C＇，＇STO ASE OP THE FESOURCE LOCATIONS PQQUIPED＊，
749.		K＇LOCATIONS IN THE SIOCKS ARRAY．＇，／，＇，＇ANE EHE POYTVALENCE＇．
750.		
751.	129	
752.		
753.	132	
754.	1101	PORMAT（＊，A4，I4，1118．4A4）
755.	1102	PJBMAT（＇＇，UNIDENTIFIED CARD IMAGE：＇，A4，I2，11I6， 4 A ${ }^{\prime \prime}$ ）
756.		END

```
758.
754.
7 6 0 .
7 6 1 .
762.
762.
703.
704.
7 6 6 .
757.
768.
7 6 9 .
770.
771.
772.
774.
774.
776.
777.
778.
7 7 9 .
779.
781.
781.
753.
794.
780.
7%7.
7%:
7.44.
790.
792.
792.
794.
775.
795.
797.
799.
BCO.
8-1.
802.
B)3.
804.
8)5.
8)6.
807.
8)8.
829.
810.
811.
812.
813.
814.
815.
816.
817.
817.
820.
821.
822.
823.
824.
825.
826.
827.
828.
829.
830.
831.
832.
833.
834.
835.
```

```
            SUBROUTINE TGTDIM
```

 SUBROUTINE TGTDIM
 IMPLICIT INTEGER *2 (A-Z)
 IMPLICIT INTEGER *2 (A-Z)
 INTEGER * 4 MSTAT
 INTEGER * 4 MSTAT
 REAL *4 THETA, S, C, SIN, COS, SMAM
 REAL *4 THETA, S, C, SIN, COS, SMAM
 C THE POLLOWTNG JCL INSERTS TSARINA"S COHMON "BASIC"
C THE POLLOWTNG JCL INSERTS TSARINA"S COHMON "BASIC"
DD DSN=*.STEPY.COMMON,DISP=SHR
DD DSN=*.STEPY.COMMON,DISP=SHR
DD * DCB=BLKSIZE=890
DD * DCB=BLKSIZE=890
COMMON/STAES/ STAI(5OC,17),MSTAT(8),NTRIAI,ITRIAI,NSTMT
COMMON/STAES/ STAI(5OC,17),MSTAT(8),NTRIAI,ITRIAI,NSTMT
IF (NPRINT -LT. 0) WRITE (6,104)
IF (NPRINT -LT. 0) WRITE (6,104)
IF (NT.EQ. \&) GO TO 22
IF (NT.EQ. \&) GO TO 22
DO 2) I = 1, NT
DO 2) I = 1, NT
C IGIDIM COMPUTES AND STORES THE LOCAMION OP THE CTHPP COENEES.
C IGIDIM COMPUTES AND STORES THE LOCAMION OP THE CTHPP COENEES.
L1 = IGT(I, 12)
L1 = IGT(I, 12)
L2=TGT(I,13)
L2=TGT(I,13)
\#HETA = TGT (I, 9)/57.3
\#HETA = TGT (I, 9)/57.3
S = STN (THETA)
S = STN (THETA)
C=COS (THEIA)
C=COS (THEIA)
L1S = L1*S
L1S = L1*S
L1C=L1*C
L1C=L1*C
L2S = L 2*S
L2S = L 2*S
L2* = L2*C
L2* = L2*C
TG`(I,3)=TGT(I, 1) + L9S TG`(I,3)=TGT(I, 1) + L9S
MG:(I, M) =IGM (I, 1) + L MS
MG:(I, M) =IGM (I, 1) + L MS
MGT(I,4)=IGm(I, 2) + L1C
MGT(I,4)=IGm(I, 2) + L1C
GGT (I,5) =IGZ(I, 3) + L2こ

```
            GGT (I,5) =IGZ(I, 3) + L2こ
```



```
        O-JNOENUE
```

 O-JNOENUE
 ON2-5Q, ?) - = 24
 ON2-5Q, ?) - = 24
 20 = M= M2
    ```
            20 = M= M2
```



```
            I!=IGT2(I.12)
```

 I!=IGT2(I.12)
 1.2 = TGM2(I,13)
 1.2 = TGM2(I,13)
 GHETA= GG:2(T, 3)/5%.
 GHETA= GG:2(T, 3)/5%.
 S = STN (mHEZA)
 S = STN (mHEZA)
 C=COS (THETA)
 C=COS (THETA)
 L15=L1*C
 L15=L1*C
 L1C=L1*C
 L1C=L1*C
 L2S = L2*S
 L2S = L2*S
 I2C= L2*C
 I2C= L2*C
 EGI2(I.3)=TGT2(I, 1) + L1S
 EGI2(I.3)=TGT2(I, 1) + L1S
 IGT2(I,4)=IGT2(I, 2) + ITC
 IGT2(I,4)=IGT2(I, 2) + ITC
 IGT2(I,5) = IGT2(I, 3) +L2C
 IGT2(I,5) = IGT2(I, 3) +L2C
 IGT2(I,G)=TGT2(I,4)-L2S
 IGT2(I,G)=TGT2(I,4)-L2S
 TGT2(I,7)= IGT2(I, 5) - L1S
 TGT2(I,7)= IGT2(I, 5) - L1S
 IGT2(I,8)=IGT2(I, 6) = L1C
 IGT2(I,8)=IGT2(I, 6) = L1C
 #GT2(I,8)=IGT2(I, 6) = L1C
 #GT2(I,8)=IGT2(I, 6) = L1C
 \P((KIEST,GT. 2) ©OR. (NPFIVI, L%. ?)
 \P((KIEST,GT. 2) ©OR. (NPFIVI, L%. ?)
 CONTINOE
 CONTINOE
 IF (NI .EQ,)) GO mO 50
 IF (NI .EQ,)) GO mO 50
 NR=0
 NR=0
 DO 30 I = 1. Nm
 DO 30 I = 1. Nm
 C FOF SPECIPIED TARGETS THE OAFGET NUMBEF IS SIORED IV MHEN FCF
C FOF SPECIPIED TARGETS THE OAFGET NUMBEF IS SIORED IV MHEN FCF
C
C
IATEF REPPRENCE.
IATEF REPPRENCE.
IF ((IGM(I,11).LT. 1) .OF. (TGT(I,IC).EO. 1)) GO - OM
IF ((IGM(I,11).LT. 1) .OF. (TGT(I,IC).EO. 1)) GO - OM
IE (|IGM(I.11
IE (|IGM(I.11
NG=NR+1
NG=NR+1
IP(NR.GM, (NG)=?
IP(NR.GM, (NG)=?
IF ((KMES=.GT.4) AND. (ITRIAL.LI. 2))
IF ((KMES=.GT.4) AND. (ITRIAL.LI. 2))
X
X
((KIESM (GTMOM) \&ND.GHITTRIA
((KIESM (GTMOM) \&ND.GHITTRIA
CONTINOE
CONTINOE
IF (NA .EQ.NST) GO TO 50
IF (NA .EQ.NST) GO TO 50
NAT=NR+1
NAT=NR+1
DO 40 NE4 I NRI,NST
DO 40 NE4 I NRI,NST
MHIT(I) = ?
MHIT(I) = ?
CONTINUE
CONTINUE
IF ((NPMINT.LT. O1 .OP. (KTEST.GT. 2)) WRIIE(6,104)
IF ((NPMINT.LT. O1 .OP. (KTEST.GT. 2)) WRIIE(6,104)
RETURH
RETURH
WRITE (6,193)
WRITE (6,193)
STOP
STOP
101 PORMAT(* ',MHHIT(', I2, ') = ', I 2)
101 PORMAT(* ',MHHIT(', I2, ') = ', I 2)
102 PORMAT(1, %ARGET CORNEF: TGT % I,I4,4(4X,IG,1X,I6))
102 PORMAT(1, %ARGET CORNEF: TGT % I,I4,4(4X,IG,1X,I6))
103
103
MORMAT(IO', COMPUTATION STOPPED: HIT DATA SPACE'.
MORMAT(IO', COMPUTATION STOPPED: HIT DATA SPACE'.
X
X
194
194
PORQUIRED POR MORE THAN "NSTM TARGETS')
PORQUIRED POR MORE THAN "NSTM TARGETS')
PORBAT ('1')
PORBAT ('1')
END

```
            END
```


| 885. | | SUBROUTINE TGTZON |
| :---: | :---: | :---: |
| 886. | | IMPLICIT INTEGER＊ $2(A-2)$ |
| 887. | c | the following jel inserts tsariva＇s common＂basicl |
| 888. | $1 /$ | DD DSN＝＊．STEPY．COMMON，DIS 5 ＝SHR |
| 889. | ／1 | DD＊，DEb＝BLKSI2E＝800 |
| 890. | c | |
| 891. | c | |
| 8 $\ddagger 2$. | c | SUBSEQUEAT SEARCH PROCESS CAN RE REDUCED．CONSIDES THE ENJこE |
| 893. | c | TARGET AREA MAPQED BY LINES OP CONSTANT（X＋Y）．ALL matget m wimb |
| 894. | c | |
| 895． | c | （ X Y Y）APE IS THE K－PH ZONE．THS OPDESED INDEX NUYPES POE EHE |
| ¢96． | c | |
| 万？7． | c | |
| 593. | c | |
| $t+3$. | \because | AS［3D＊E（K－1，2）． |
| 9う0． | － | |
| 9）1． | \because | |
| 4\％ | － | |
| 叮3． | | |
| צ） 4. | \square | |
| 735． | \square | A 4 － |
| 926. | \cdots | |
| 967. | | 0） $12 \mathrm{t}=1.8{ }^{-}$ |
| $9) \mathrm{B}$ ． | $1 \sim$ | $\because ?(1)=?(1,1) / 50 ?$ |
| 927. | | ¢zone（1．0）$=0$ |
| 910. | | IZUSE（1，2）$=$ a |
| 911. | | If（IZ（1）．NE．O） |
| 912. | | $\mathrm{K}=$ ？ |
| $\bigcirc 13$. | | IZONE（1，1）＝ 1 |
| 914. | | $\mathrm{I} 30 \mathrm{E}=(1,2)=1$ |
| 915. | | IF（NT．EQ．1）GO 士0 |
| 916. | | Do $12 \mathrm{I}=2 . \mathrm{NT}$ |
| 917. | | |
| 918. | 12 | IZONE（1，2）$=$ 士 |
| 919. | c | ALL HITS IN zCNE \＃ 1 HEEE． |
| 720. | | GJ F O 30 |
| 921. | 14 | DO $16 \quad k=2,100$ |
| 922. | | IF（IZ（1）．EQ ．$(\mathrm{K}-\mathrm{T})$ ）G0 T0 9 8 |
| 923. | | $\operatorname{TOONE}(\mathrm{K}, 1)=$ ？ |
| 924. | 16 | IZONE（K，2）$=0$ |
| 925. | 19 | consinue |
| 926. | | IZONE（K，1）＝ 1 |
| 927. | | IZONE（K－1，2）＝ 1 |
| 928. | | IZONE（K，2）$=1$ |
| 929. | $=$ | AT THIS POINTK IS ZONE OF FIRSE HET |
| 930. | | IF（NT．EQ．1）GO TO 31 |
| 931. | | Do $20 \quad \mathrm{I}=2, \mathrm{~N}$ ？ |
| 932. | | IP（IZ（：）．G\％．（k－1））GO TO 22 |
| 933. | 20 | IZONE（K，2）＝I |
| 934. | c | |
| 935. | c | IN（K＋1）ZONE． |
| 936. | 22 | CONTINUE |
| 937. | | $\mathrm{N}=\mathrm{I}$ |
| 938. | | DO 23 I＝N，N： |
| 939. | $こ$ | SKIP TO 26 JP HIT IN 2ONP OF Pasor his |
| 940. | | IP（IZ（I）．EQ．IZ（I－1））GO－0 26 |
| 941. | 24 | $\mathrm{K}=\mathrm{K}+1$ |
| 942. | | I2ONE（K，1）$=$ I－1 |
| 943. | | IZONE（K，2）$=\mathrm{I}-1$ |
| 944. | C | ip yo hits in zone increment zone |
| 945. | | If（IZ（I）G\％．（K－1））Go＝0 24 |
| 946. | | IZONE（K，1）＝I |
| 947. | | $\operatorname{IZONE}(\mathrm{K}, 2)=\mathrm{I}$ |
| 948. | | G0 TJ 28 |
| 949. | c | INCREMENT UPPER HIT IN ZONE |
| 950. | 26 | IZONE（K，2）＝I |
| 951. | 28 | CONTINUE |
| 952. | 30 | Continue |
| 953. | | IP（ $(\mathrm{K}+1)$ ．GT．193）GO TO 35 |
| 954. | C | fill all excess zones |
| 955. | 31 | K1 $=\mathrm{K}+1$ |
| 956. | | DO $32 \mathrm{~L}=\mathrm{K} 9.150$ |
| 957. | | $\operatorname{IZONE}(\mathrm{L}, 1)=N T+1$ |
| 958. | 32 | $\operatorname{IZONE}(\mathrm{L}, 2)=\mathrm{NT}+1$ |
| 959. | 36 | COnIINUS |
| 960. | | IP（KTEST ．LT．3）Go me 50 |
| 961. | | yRITE（6．1者） |


```
            SJBKOUTINE BOMB
            GZAL*4 RAN,FHI,S,C,SIGR,SITD,SIGX,SIGY,BDGZX, SDGZY,D,DX,IY,
            GEAL*4 RAN,FHI,S,C,SIGR,SITD,SIGX,
            X REOS, DERA, X, Y, ETN, COS
            DU DSN=*.SMEP1.COMMON,DISD=SHP
            DD *,DCB=BLKSIZE=8CO
```



```
            IF (KIEST.GT. 2) WRITE (5,102)
            NCEUHI= C
            KCEU
            OO 4? T= 1.NA
            IR(I)=C
            NH=ATE(2,9)
            EMDW = EYD(VH,?,1)
```



```
            ZF (MDC口*)
            : = 1 + 1[`*5ANO%(1.)
            =32
```



```
            *N=, + 1004=厶N(1)
            I# (EN,LE.A-T(E.11))
            \therefore(I)=
            #059 4- 
```



```
            #y-2
            #..---7
                    *)(*,1)<67.
            = In(k!!)
            \because\because(?4-)
```



```
            Fj.92A=A1.2X-S*2こ%(5,9}/2.
```



```
            J=NT(T,8)/(NS- ?)
            DX=3* [
            DY=C*D
12 CJN=ISUR
            SIGX=AIT(I,G)
            SI;Y = ATT(I., \)
            ) 20 M=1.NS
            F (EMDW .LO. D) NCBUHT = NCRUH% * 1
            IF (NCBUHT .GT. 290) GO T0 6%
            IF (MODE.LT.O) SO TO 13
            IP (MODE.EQ. ה) GO GO TO 11
            M= PANDT(1.)
            GO :O 12
    FN = PAND(1.)
    5N=PAN(1)
            IP (ON GT. WPNEOL(NW)) GO TO 17
            IP(RN-GT.WPNREL(NW)) GOMO 17
            CONTINUE
            CALL GAUSS(SIGX,X,K=EST,MODF)
            CALL GAUSS(SIGY,Y,K:ESI,MODE)
            ठAGZX=EDGZX+X*S+Y#C
            BAGZY=BDGZY+X*C-Y*S
            IP ((KTES*.GT. O) OOR. (NPRINI.LF. - 1))
            X
```



```
            IP (EMDW.GE. j) GO TO 16
            CBUHT(NCBUH%,1) = BAGZX
            CBUHT(NCBUHT,2)=BAGZY
            Go To 18
            16 IF ((BAGZX+BAGZY) . LI. - 500) GO mO 1R
            INDEX = I
            CALL TESMHT(INDEX, BAGZX,BAGZY,NW)
            GALL TES
            IF (ENDW.LT.O
    BDGZX=BDGZX+DX
    BDGZY=BDGZY&DY
```


AD-A090 682 RAND CORP SANTA MONICA CA F/6 1/5

TSARINA: USER'S GUIDE TO A COMPUTER MODEL FOR DAMAGE ASSESSMENT-EETC(U) JHL 80 D EMERSON RAND/N-1460-AF F49620-77-C-0023
UNCLASSIFIED
NL


```
1C48. 20 CONTINOE
1049. 40 CONTINUE
1050. RETURN
1051.
1052.
1052.
1053.
1054.
1055.
1056.
1057.
1058.
60 MRITE (6,103)
STOP
1:1 PORHAT(" '.ATTACK *'I4.' BOHB E',\Psi4,' X-DIM ',IB,
    \ Y-DIM 1. 18)
```



```
    103 PJRMAT/'O','THE CBUHT ARFAY MOST BE EMLARGED IO *,
        y 'Accommodate mose cbu ueapons')
        END
```

| 1060. | | SUBEDUSINT TESTHT(I,BX, EY,NW) |
| :---: | :---: | :---: |
| 1061. | | IMPIICIT INTEG3R 2 (A-Z) |
| 1062. | | INTEGER * 4 AID. HELP, तINO, HAXD, XY, K |
| 1063. | | FEAL * 4 DAAY, DR, PP |
| 1654. | c | IHP FOLLOWING JCI INSERTS TSARINA'S COHEDON MEASIC" |
| 1065. | 11 | DD DSN=*.STEPY, COMMO, DISP $=$ SH? |
| 1066. | 11 | DD *, DCB=BLKSIZE=8\% |
| 1057. | c | |
| 1068. | | dimension plag (5), DR (9). PP(6) |
| 1069. | C | |
| 1070. | | $X Y=B Y+B Y$ |
| 1071. | | $\mathrm{NN}=\mathrm{XY} / 500$ |
| 1072. | | $\mathrm{K}=\mathrm{MAXO}(\mathrm{NN}+1.1)$ |
| 1073. | | $K=M I N O(K, 99)$ |
| 1074. | | LL $=0$ |
| 1C75. | | If (K.EQ. 1) GO TO 10 |
| 1076. | | IL $=$ ITONE (K-1. 1) |
| 1077. | | IF (K.FQ. 2) GO TO 15 |
| 1078. | | IF ((IZONS $K-1.1)$ - EQ. IZONE (K-2,2)) AND. |
| 1079. | | |
| 1090. | | GO TO 15 |
| 1081. | 19 | $L L=I Z O N E ~(1,1)$ |
| 1082. | 15 | CONTINUE |
| 1083. | | LU $=$ IZONE ($(\mathrm{K}+1), 2)$ |
| 1084. | | IF (KTEST .GI. 3) WEITE (6,102) I, LL,LU |
| 1085. | | DO 100 IL = IL. LU |
| 1086. | C | |
| 1087. | | $\mathrm{L}=\mathrm{rO}(\mathrm{IL}, 2)$ |
| 1088. | | IF (L -LF. O) GO TO 100 |
| 1089. | | IP (5 GT(L, 12) + TGT (L, 13)) -GT. 500) G0 T0 10) |
| 1090. | | NTGT $=$ TGT ($\mathrm{L}, 1 \mathrm{C}$) |
| 1091. | | hiflag = 0 |
| 1092. | | |
| 1093. | | nPlag = 1 |
| 1094. | | DR (9) $=$ EAD (NM, NTG T, 10) |
| 1095. | 23 | DR(1) $=$ EMD (NH,NTGT, 1) |
| 1096. | | DMAX $=$ DR(1) |
| 1297. | | $D \mathrm{P}(2)=E M D(N H, N T G T, 2)$ |
| 1698. | | If (DHAX .LT. DF (2)) DHAX = DR(2) |
| 1099. | | HELP $=$ EMD (NW, NTGT.9) |
| 1100. | | DO 25 FLG $=1.5$ |
| 1101. | | AID $=10 * *$ (6-FLG) |
| 11 c2. | | FLAG(PLG) = HELP/AID |
| 1103. | 25 | HPIP = HELP - AID*PLAG (FLG) |
| 1104. | | FLAG (6) $=$ HELP |
| $11) 5$. | C | |
| 1196 | | DO 30 FLG $=1.6$ |
| 1197. | | $D R(P L G+2)=C$ |
| 1128. | | IP (PLAG (PLG) -LT. 4) GO T0 32 |
| 1199 | | IF (FLAG(FLG) .LT. 6) GO TO 28 |
| 1110. | | AID $=$ EMD (NW, NTGT, (1LG + 2)) |
| 1111. | | DR(PLG+2) $=$ AID/1000 |
| 1112. | | PP(PLG) $=(A \leq D-1000 * D E(F L G+2)$)/10C. |
| 1113. | | IF (FLAG (PLG) ERQ B) GO TO 30 |
| 1114. | | GO TO 29 |
| 1115. | 28 | DR(PLG +2) $=$ EMD (NT, MTGT, (FLG* 2)) |
| 1116. | | If (PLAG(PLG) -NE. 4) GO TO 3) |
| 1117. | 29 | IF (DR(PLG+2) -GT. DHAX) DHAX = DP(PLG+2) |
| 1118. | 30 | COnTINOS |
| 1119. | 40 | COntinue |
| 1120 | | D = DEAX |
| 1121. | | $D=1.414 * 0$ |
| 1122 | | |
| 1123. | | IF ($(T G T(L, 4) * D)$-LT. BY) GC T0 100 |
| 1124. | | |
| 1125. | | If (T (TT (L, 8) - D) GT. SY) G0 TO 102 |
| 1126. | | IF (KTEST GT. 4) WRITE (6, 101) I, L, BX, BY, DMAX, HSLP $^{\text {a }}$ |
| 1127. | | |
| 1128. | 130 | continue |
| 1129. | | MFLAG $=0$ |
| 1130. | | D0 $120 \mathrm{~L}=1 . N T$ |
| 1131. | | |
| 1132. | | HTGT $=$ TG: ${ }^{\text {(1,10) }}$ |
| 1133. | | DR (1) * EHD(NR, HTGT, 1) |
| 1134. | | DSAX $=$ DR (1) |
| 1135. | | IF ((NTGT.EQ. 1). AND. (HCR.GT. ©) G0 T0 115 |

| 1136. | | DR (2) = EMD(MW, WTGT, 2) |
| :---: | :---: | :---: |
| 1137. | | If (DHax . LT? DR(2) DRAX = DR(2) |
| 1138. | | HELP = EAD (IN, MTG7.9) |
| 1139. | | DO 105 PLg $=1,5$ |
| 1140. | | AID $=10$ ** (6-FLG) |
| 1141. | | PLAG (FLG) $=$ 日ELP/AID |
| 1142. | 105 | HELP = ELLP - AID*PLAG(FLG) |
| 1143. | | FLAG(6) $=$ hELP |
| 1144. | c | |
| 1145. | | D0 110 Plg $=1,6$ |
| 1146. | | DR ($P L G+2$) $=0$ |
| 1147. | | If (PLAG(PLG) .lT. 4) GO TO 110 |
| 1148. | | IF (PLAG (FLG) . LT. 6) G0 20106 |
| 1149. | | AID = FHD (M\%, MTGT, (\%LG+2)) |
| 1159. | | DR (PLG+2) = AID/1309 |
| 1151. | | PP(PLG) = (AID - 1000\%DR(FLG+2) $1 / 100$. |
| 1152. | | IF (FLAG (FLG) E®Q - 8) GO TO 110 |
| 1153. | | GO TO 108 |
| 1154. | 106 | DR(PLG+2) = ERD (NW, MTGT, (FLG42) |
| 1155. | | If (PLAG(PLG) .HE. 4) G0 TO 110 |
| 1156. | 108 | IF (DR(FLG*2) ,GT. DHAX) DHAX = DR(PLG+2) |
| 1157. | 110 | COHTIMOE |
| 1158. | 115 | IF (KTEST .GY. 4) WRITE (6, 191) I,L,BX, BY, THAX,FELP |
| 1159. | | CALL HITTGT(I,L,BX,BY, WN, NTGT, DR, PP, PLAG,RPLAG) |
| 1160. | 120 | comtinoz |
| 1161. | | ESTORN |
| 1162. | 101 | |
| 1163. | I | 1. I6., I-DIM , I6, 28.7. 58 |
| 1164. | 102 | |
| 1165. | | EMD |

| 1418. | | SOBROUTINE CHECKR |
| :---: | :---: | :---: |
| 1419. | | IMPLICIT EMTEGER＊ 2 （A－2） |
| 1420. | | INTEGPL＊ 4 GSTAT．WHOLES |
| 1421. | | REAL＊ 4 STAT |
| 1422. | c | IHE FJLLOUIAG JCL INSERTS TSARIMA＇S COMMON＂BASIC＂ |
| 1423. | $1 /$ | DD DSY＝＊，STEP1．COHHON，DISP＝SH？ |
| 1424. | ／／ | DD＊，DCB＝BLKSI2E＝85C |
| 1425. | | COMMOM／Smats／STAT 503,17$)$ ，MSTAT（8），NTRIAL，ITRIAL，NSTAE |
| 1426. | | |
| 1427. | | $\mathrm{MC}=0$ |
| 1428. | | $\mathrm{My}=0$ |
| 1429. | | LHOLFS $=10000$ |
| 1430. | | DO $40 \mathrm{HRN}=1.5$ |
| 1431. | c | CYCEE SHRU AS MAMY AS 8 RUMMAY／PAXIMAYS． |
| 1432. | | IRG＝MRW（HRU） |
| 1433. | c | EXIT IF MO TARGET YUMBER（IRW）FOUND． |
| 1434. | | IP（IRN．EQ．O） 60 TO 53 |
| 1435. | | WHEXN＋9 |
| 1436. | | IF（MRIT（IRT）－EQ．O）GO T0 4\％ |
| 1437. | | If（KTEST ．GT．4）URITE（6，102）IRW |
| 1438. | | IMDEX＝HPE |
| 1439. | | CALL ROMWAY（IMDEX，IRW，ICOND，MROLES） |
| 1440. | C | |
| 144% | c | ICOND $=$ ¢ IP mot． |
| 1442. | C | |
| 1443． | | IF（ICOND－EQ．I）MC＝NC＋1 |
| 1444． | | IF（HAOLES ．LT．LHOLES）LHOLES＝MHOLES |
| 1445. | | |
| 14＊6． | | |
| 1447． | 40 | COITIMUE |
| 1448． | 50 | IF（MC．E日大則） 60 TO 60 |
| 1449． | | IP（MPAIMI ．LT．3）MPITE（6．109） |
| 1450． | | WSTAI－MSTAI＋1 |
| 145% | 60 | COMTIMOE |
| 1452. | | |
| 1453. | | RETURIM |
| 1454． | 70 | mStat（1）＝hSiat（1）＋LhOLES |
| 1455. | | |
| 1456. | | EPPAIA EHOLES |
| 1457. | | 1\％（LHOLS－EQ． 10500 ferpair m 0 |
| 1458． | | mexpar |
| 1459. | 101 | |
| 1460． | 102 | POAEAR（＇＇，＇Cascr tazget \％，It） |
| 1461. | 133 | |
| 1462． | | $5{ }^{\text {E }}$ |

| 1404. | | SUBROUPTNE RUNWAY (HRN, IRW, ICOND, NHOLES) |
| :---: | :---: | :---: |
| 1465. | | IMPLICIT INTEGSR *2 (A-2) |
| 1466. | | INEEGER * 4 NHOLES. IHOLE, MSTAT |
| 1467. | | REAL $\quad 44$ STAT, TH, TH1, TH2, KX, MY, SIM, COS |
| 1468. | c | THE POLLOHING JCL INSERTS TSARIHA'S COMMON "BASIC" |
| 1469. | 11 | DD DSN=*. STEP 1. COMMO N, DISP = SHR |
| 1470. | $1 /$ | DD *, DCB $=$ ELKSIZ $=803$ |
| 1471. | | |
| 1472. | | COMHON /HITS/ XN(250), YN(250), NZ(250) |
| 1473. | | COMMON /CONTRL/ NREP,NPLOT, INM, INL,CHANGE,NSAVE, LIST,NJMEM |
| 1474. | | DIMENSION NTEST (250). YH(250.2) |
| 1475. | C | |
| 1476. | 6 | |
| 1477. | C | MCW) On each punaty and designa |
| 1478. | c | Stops searching a given run way uhenever fequirement is stisspizd. |
| 1479. | c | |
| 1480. | | TH=TGT (IRW.9)/57.3 |
| 1481. | c | |
| 1482. | c | ESTABLISH ORIGIN (XO, YO) POP a RECTANGULAR COORDINATE SYSTEY With |
| 1483. | c | the X-axis on the more sodihtely gdge of the ponamt. |
| 1484. | C | |
| 1485. | | $\mathrm{NHI}=0$ |
| 1486. | | NHOLES $=1000$ |
| 1487. | | DS $5 \quad N=1.250$ |
| 1488. | 5 | $\mathrm{NZ}(\mathrm{N})=0$ |
| 1489. | | IP (IG\% (IRW, 12) , GT. TGT (IRM, 13)) Go To 12 |
| 1490. | | NDIE $=1$ |
| 1491. | | XO=TGT (IRW, 1) |
| 1492. | | $\mathrm{YO}=\mathrm{TGT}(\mathrm{TRU}, 2)$ |
| 1493. | | LTH = TGT (IRH.13) |
| 1494. | | WID $=$ TGT (IRW, 12) |
| 1495. | | GJ TO 20 |
| 1496. | 10 | VDI $\mathrm{R}=2$ |
| 1497. | | |
| 1498. | | $\mathrm{YO}=\mathrm{TGT}(\mathrm{TRW,8)}$ |
| 1499. | | LTH = TGT (IRS, 12) |
| 1500. | | WID $=$ TGT (IRM, 13) |
| . 1501. | 20 | CONTINUE |
| 15 C 2. | | IP (KTEST, GT. 4) WRITE (6,1094)IRH, $10, Y 0, I T H, H E D . M C L . M C W$ |
| 1503. | | IF (HCW GT. MID) GO TO 32? |
| 1504. | | NHIT1 = NHIT(IRN) |
| 1505. | | DO SC I = 1, \#HITI |
| 1506. | | |
| 1507. | | NTW = HITS (MRN, 3,I) |
| 1508. | | GO TO 60 |
| 1509. | 50 | COntinde |
| 1510. | 60 | CONTINOE |
| 1511. | | Mon $=1$ |
| 1512. | | EHDH $=$ EHD (NT W, 1,1) |
| 1513. | | DO 70 I = 1, NHIT |
| 1514. | | IP (HITR(HRH, 3.I).EQ. NTW) GO TO 79 |
| 1515. | | |
| 1516. | | NON $=0$ |
| 1517. | | EHDW $=0.0$ |
| 1518. | | GO TO 80 |
| 1519. | 70 | continoe |
| 1520. | 80 | CONTINOZ |
| 1521. | | DO 140 I $=1$. NHITI |
| 1522. | c | TEANSPOAM HIT COORDIHATES TO PUNHAY COOEDINATES. |
| 1523. | | NHI = NHE + 1 |
| 1524. | | KB $=$ HITR (HRW, 1 , If |
| 1526. | | |
| 1527. | | IP 1TH.8Q. 0.01 go To 110 |
| 1528. | | $\mathrm{XX}=\mathrm{XB}-\mathrm{YO}$ |
| 1529. | | YY $=18-10$ |
| 1530. | | $\mathrm{R}^{=}(X X * X X+Y Y * Y Y) * *(0.5)$ |
| 1531. | | |
| 1532. | | |
| 1533. | | IF ($X X$ - 2T- $0 . C$ (TH1 $=$ TH4 + 3.9416 |
| 1534. | | TH2 $=$ TH1 + TH |
| 1535. | | IF (NDIR ERQ. 2) TH2 2 TH2-1.5796 |
| 1536. | | TH (I) $=8 * \cos$ (TH2) |
| 1537. | | YR(I) $=\mathrm{R} * \mathrm{STM}^{(T H 2)}$ |
| 1538. | | IP (RTEST -GT. 6) WRITE (6.1可9)I,XN(I), YN(I) |
| 1539. | | G0 mo 130 |
| 1540. | 119 | IF (HDIA.EQ. 2) GO TO 12? |

| 1541. | | $X M(I)=\mathbf{L B}-\mathrm{XO}_{0}$ |
| :---: | :---: | :---: |
| 1542. | | $Y M(I)=Y B-Y O$ |
| 1543. | | GO TO 130 |
| 1544. | 120 | $X M(I)=Y B-Y O$ |
| 1545. | | YM (I) $=\mathrm{XO-XB}$ |
| 1546. | 130 | IF (I .GT. 249) GO TO 159 |
| 1547. | 140 | costinoz |
| 1548. | | GO TO 160 |
| 1549. | 150 | MRITE (6.1001) IRM, ITRIAL |
| 1550. | 160 | COMSIMUE |
| 1551. | | NH = NHI |
| 1552. | c | |
| 1553. | c | |
| 1554. | | |
| 1555. | | IP (MPLOT .EQ. 2) CALL PLOTHT (NB,IRW,LTH, HID) |
| 1556. | | IF (KTEST .GT.6) WRITE (6,1006) NHIT (IRW),NH |
| 1557. | | DO $170 \mathrm{I}=1, \mathrm{NH}$ |
| 1558. | | $\mathrm{YH}(\mathrm{I}, 1)=\mathrm{YN}(\mathrm{I})$ |
| 1559. | 170 | YH ($\mathrm{I}, 2$) $=1$ |
| 1560. | | If (NH.EQ. 11 GO TO 190 |
| 1561. | | DO $180 \mathrm{~J}=2$, NH |
| 1562. | | DO $180 \mathrm{~K}=2$, NH |
| 1563. | C | ORDER ALL HITS FROM LONEST Y TO HIGHEST. YH(I, 1) |
| 1564. | c | Y COORDINATE, YH(I, 2) THE HIT NOMBER, OF THE I IH OPDPRED HIT. |
| 1565. | | $\mathrm{I}=\mathrm{NH}-\mathrm{K}+2$ |
| 1566. | | IP (YH(I.1) .GE. YH(I-1.1)) GO TO 180 |
| 1567. | | $T=Y \mathrm{H}(\mathrm{I}-1,1)$ |
| 1568. | | $I N=\mathrm{IB}(\mathrm{I}-1,2)$ |
| 1559. | | YH (I-1, 1) = Y (I, 1) |
| 1570. | | YH ($\mathrm{I}-1,2$) $=\mathrm{YH}(\mathrm{I}, 2)$ |
| 1571. | | Y (5 , 1) = T |
| 1572. | | $\mathrm{YH}(\mathrm{I}, 2)=\mathrm{TN}$ |
| 1573. | 180 | CONTENUE |
| 1574. | 190 | COHTINUE |
| 1575. | | $\mathbf{X L}=0$ |
| 1576. | | XV = MCL |
| 1577. | 202 | 12 $=0$ |
| 1578. | | $10=\mathrm{MCH}$ |
| 1579. | | NYL $=1$ |
| 1580. | | IP (NON . EQ. O) GO TO 210 |
| 1581. | | YL = YL - EHDH |
| 1582. | | YO $=$ YO + EMDU |
| 1583. | 210 | CONTINOE |
| 1584. | 220 | IHOLE $=0$ |
| 1585. | | DO 250 I $=$ NYL, WH |
| 1586 | | IF (NZ (I) EQ. 1) GO TO 250 |
| 1587. | | $Y T=Y H(1.1)$ |
| 1588. | | IP (HOY - EQ. 1) GO 10230 |
| 1589. | | $\mathrm{R}=\mathrm{EHD}(\mathrm{HITR}(\mathrm{MRM}, 3, \mathrm{YH}(1,2)), 1,1)$ |
| 1590. | | YL $=\mathrm{YL}-\mathrm{R}$ |
| 1591. | | $\mathbf{Y U}=\mathbf{T O}+\mathrm{R}$ |
| 1592. | 230 | IP (YT .LT. YL) GO TO 240 |
| 1593. | | XT $=$ XM(YH(I, 2) $)$ |
| 1594. | | |
| 1595. | | IF (YT -GI. YU), GO TO 260 |
| 1596. | | IHOLE = IHOLE + 1 |
| 1597. | | IF (KTEST .GT. 61 WRITE (6,1028) I, IHOLE. IL, YO |
| 1598. | | HTEST (IHOLE) $=1$ |
| 1599. | | |
| 1600. | 240 | IF (MON EQ. 11 60 T0 250 |
| 1601. | | |
| 1602. | | YL $=\mathrm{IL}$ - E |
| 1603. | | T0 = IO-R |
| 1604. | 250 | COMTIMOE |
| 1605. | 269 | COMTIMOE |
| 1696. | | IP (IHOLE -EQ. O) GO TO 300 |
| 1637. | | |
| 1608. | | HHOLES = GIMO (MHOLSS, IHOLE) |
| 1609. | | IF (191 EQ E O GO TO 270 |
| 1610. | | IL = IL + INM |
| 1611. | | Y0 = Y0 * IMU |
| 1612. | | IF (10 ©GT. (VIDAEHDW) GO TO 289 |
| 1613. | | 60 TO 220 |
| 1614. | 270 | IL - IL + \% + \% M |
| 1615. | | $80=70=8$ \% IMM |
| 1616. | | IF (TU © GT. UID) GO \%0 280 |
| 1617. | | IF (KTESI .6T. 4) WRITE(6.1908) MROLES |

| $\begin{aligned} & 1618 . \\ & 1619 . \end{aligned}$ | 289 | $\begin{aligned} & \text { GO TO } 220 \\ & \text { CONTINUE } \end{aligned}$ |
| :---: | :---: | :---: |
| 1620. | | $\mathbf{X L}=\mathbf{X L}+\mathrm{IHL}$ |
| 1621. | | $\mathbf{X U}=\mathbf{X U} \mathbf{U}+I N L$ |
| 1622. | | IF (XU GT. LTH) GO TO 290 |
| 1623. | | GO TO 200 |
| 1624. | 290 | CONTINUE |
| 1625. | | IP (NPRINT.GE. 3) GO TO 295 |
| 1626. | | |
| 1627. | | HKITE (6.1CO2) IRM |
| 1628. | | IF (NPEP.GT, O) WRITE (6,1911) NHOLES |
| 1629. | | IP (NPLOT .EQ. 1) CALL PLOTHT (NH,IPW, LTH, 1 ID) |
| 1630. | 295 | ICOND $=1$ |
| 1631. | | |
| 1632. | | RETURN |
| 1633. | 302 | IP (NPRINT -GT. 2) GO TO 319 |
| 1634. | | IF (MRW EQQ 1) WRITE (6.1512) ITRIAI |
| 1635. | | MRITE (6,1003) IRW |
| 1636. | 310 | ICOND $=0$ |
| 1637. | | |
| 1638. | | NHOLES $=0$ |
| 1639. | | EETUKN |
| 1640. | 320 | ;RITE (6,1225) IRN |
| 1641. | | STOP |
| 1642. | 1000 | FORMAT ('1.) |
| io4う. | 1001 | |
| 1644. | X | * IN TRIAL *', I4././ |
| 92 +5. | 1052 | |
| 1645 | 1003 | |
| 1647. | 1004 | FOREAT (* ' RUNWAY SPECS ', I4, 4X,6IP) |
| 1648. | 1005 | |
| 1649. | X | 'FLIGHT OPERATIORS ${ }^{\circ}$ |
| 1650. | 1096 | PORHAT (* ' \% HITS TO CHECK* 2I6) |
| 1651. | 1008 | |
| 1652. | 1099 | PORAAT (*: TEST POINT E'. I4, 2I 19) |
| 1653. | 1010 | |
| 1654. | 1011 | PORHAT (* ' $17 \mathrm{X}, \mathrm{I} 4,{ }^{\circ} \mathrm{HOLES}$ MUST BE PEPAIRED TO MPDT PUNWAY |
| 1655. | X | 'MINIMOHS * /) |
| 1656. | 1012 | |
| 1657. | | END |

| 1822. | 40 | cont inue |
| :---: | :---: | :---: |
| 1823. | | WPITE (6.104) FCPEN |
| 1824. | | |
| 1835. | 50 | CCNTINUE |
| 1826. | C | |
| 1827. | c | USE SUBroutine restat ic summarize the rescurce loss statistics |
| 1828. | c | |
| 1829. | | CALL RESTATIPECPLESI. 11. .NOPEC . 1. NTRIALI |
| 1830. | | CALL RESTATI AGEIL, ll, NDAGE, 2,NTRIALI |
| 1831. | | CALL RESTATI PARTS(1.1),NOPART, 3,NTRIAL) |
| 1832. | | CALL RESTATI AMMOII.1), ROMUN, 4.NTRIALI |
| 1833. | | CALL RESTATI TRAP(1, 1).NCTRAP,5,NTRIAL) |
| 1834. | | CALL RESTATIMATERL(1, 1), MOMATL, 6, NTRIAL) |
| 1835. | | CALL RESTATI POLIL.1].NOPCL. 7. NTRIALI |
| 1836. | c | |
| 1837. | | RETURN |
| 1838. | 101 | |
| 1839. | | x - target percent average hits std dev avg cbu sto . |
| 1840. | | |
| 1841. | | x - No attacks hit per attack of hits ccverage cover. |
| 1842. | | *RAGE RI R2 PEOPLE AGE PARTS AMMO TRAP'. |
| 1843. | | - MATERL BLDG no/NAME $\cdot .1 / 1$ |
| 1844. | 102 | FORMAT (1 './. 40X. -TARGET TYPE -.13.11 |
| 1845. | 103 | |
| 1846. | | 8F7.3. 6X. 4A4) |
| 1847. | 104 | FORMAT(' './. ${ }^{\text {e }}$ AT LEAST ONE MINIMUM RUNWAY SECTION WAS OPEN AFTE |
| 1848. | | XR'. FG.1.' PERCENT OF THE ATTACKS'./.11 |
| 1849. | 105 | |
| 1850. | | X*I HOLES REQUIRED REPAIR, ON THE AVERAGE. TO PROVIDE*. |
| 1851. | | X - A MIA!MLM RUNWAY'./1] |
| 1852. | 106 | |
| 1853. | | \times 8F7.3, $2 \mathrm{X}, 13.1 \mathrm{X}, 4 \mathrm{4}$, |
| 1854. | 108 | |
| 1855. | 109 | |
| 185t. | | ENC |

| 1933. | | $X Y(3)=Y Y(2)-S H$ |
| :---: | :---: | :---: |
| 1934. | | $Y Y(4)=Y Y(1)-S H$ |
| 1935. | | IF IINIT2 -GE. O) GO TO 18 |
| 1936. | | INIT2 $=1$ |
| 1937. | c | FIND URSTERLY CORNER |
| 1938. | | ILX $=1$ |
| 1939. | | DJ 15 NN $=1.4$ |
| 1940. | 15 | If (XX (NN) .LT. XX(ILX)) ILX = NN |
| 194% | | IP (S .EQ. 1.0) ILX $=4$ |
| 1942. | C | menumber cosmers so that corner * 15 the most uestern |
| 1943. | | IDIF = ILX - 1 |
| 1944. | c | COMPUSE AND ADJUST tan and cotan as raquirid |
| 1945. | | |
| 1946. | | IF ((ILX .EQ. 2) . OR. (ILX EQ. 4)) GO =0 26 |
| .1947. | | $\underline{T}=5 / C$ |
| 1948. | | G0 TJ 27 |
| 1949. | 26 | $T=-C / S$ |
| 1950. | 27 | $C T=1 . / T$ |
| 1951. | 28 | CORTINUE |
| 1952. | 18 | DO $22 \mathrm{NN}=1.4$ |
| 1953. | | $N E M=N N-I D I T$ |
| 1954. | | IF (NEW .LT. 11 NEH $=$ NEM + 4 |
| 1955. | | X (NEH) $=$ XX (NN) |
| 1956. | | $Y(N E H)=Y Y(N N)$ |
| 1957. | 22 | |
| 1958. | | IF (INIT1.GT. O) GO TO 31 |
| 1959. | c | Create a 16-point grid on targre - use more points por large igis |
| 196 C . | | INIT1 $=1$ |
| 1961. | | NXO $=8$ |
| 1962. | | $N Y O=8$ |
| 1963. | | IP (TGT(L, 12) .GT. 250.) NY $=16$ |
| 1964. | | IF (TGT (L, 12) .GT. 1CNO.) NYO $=32$ |
| 1965. | | IF (IGT(L, 13) .GT. 250.) NX) $=16$ |
| 1966. | | IF (TGT (L, 13) .GT. 1000.) NXO $=32$ |
| 1967. | | $N \mathrm{XT}=\mathrm{NXO} / 2$ |
| 1968. | | NYT $=$ HYO/2 |
| 1969. | | DO $29 \mathrm{~J}=1 . \mathrm{NXT}$ |
| 1970. | | DO $29 \mathrm{~K}=1$, NYI |
| 1971. | | $\operatorname{ICOV}(\mathrm{J}, \mathrm{K})=0$ |
| 1972. | | DO 29 NP $=3.8$ |
| 1973. | 29 | $\operatorname{PSCOV}(\mathrm{J}, \mathrm{K},(\mathrm{NP}-2) \mathrm{l}=1.0$ |
| 1974. | | NX $1=$ NXT - 1 |
| 1975. | | \$11 = 819-9 |
| 1976. | | $x 0=8 \times 0$ |
| 1977. | | $10=110$ |
| 1978. | | $\mathrm{A}^{2}=2 \mathrm{G}=(\mathrm{L}, 1)$ |
| 1979. | | $A 1=(\operatorname{TGT}(L, 7)-T G T(L, 7)) / 10$ |
| 1990. | | $A 2=12 G T(L, 3)-T G T(L, 1)) / 10$ |
| 1981. | | $13=$ TGT (1, 2) |
| 1982. | | $14=(T G T(L, 4)-T G T(L, 2)) / T 0$ |
| 1983. | | $A 5=(T G T(L, 8)-T G T(L, 2)) / X C$ |
| 1984. | 31 | Contimue |
| 1985. | c | test to see if targei conmers covered by patmern |
| 1986. | | NIT $=0$ |
| 1987. | | VGIN $=0$ |
| 1988. | | DO 17 MC $=1,7,2$ |
| 1989. | | IT=TGT(L, NC) |
| 1990. | | Y I=TGT(L, MC+1) |
| 1991. | | |
| 1992. | | |
| 1993. | | |
| 1994. | | IF ($(5 . E Q \cdot 0$.$) OR. (C.EQ. O.))$ G0 T0 9 |
| 1995. | | IP (IT -GE. (Y(1)+CT*(XT-X(1))) G0 T0 10 |
| 1996. | | |
| 1997. | | |
| 1998. | | IF (IT.LE. (1 (1) -T* (XT-X (1)) $)$) 60 50 10 |
| 1999. | 9 | HIM = MIN - 1 |
| 2000. | 10 | COMTE 50 |
| 2901. | | If (KTEST GT, 3) WaITE (6,1)92) WIn |
| 2092. | | IP (IIIM.LT. 4) G0 T0 34 |
| 2053. | c | If All corners covered by pattrrn. target folly cotesed |
| 2004. | | DO $32 \mathrm{~J}=1 . \mathrm{MXT}$ |
| 2035. | | Do $32 \mathrm{~K}=1 . \mathrm{HzT}$ |
| 2036. | 32 | $\operatorname{HCOV}(\mathrm{S}, \mathrm{R})=\mathrm{NCOV}(\mathrm{S}, \mathrm{K})+1$ |
| 2007. | | G0 3033 |

| 2008. | c | If Paritally covered, estiante ppaction that is covered |
| :---: | :---: | :---: |
| 2009. | 34 | CORTIMOE |
| 2910. | | DO $33 \mathrm{NX}=1 . \mathrm{NXI.2}$ |
| 2011. | | DO $30 . M Y=1, N Y 1,2$ |
| 2012. | | $J=(N X+1) / 2$. |
| 2013. | | $K=(X Y+1) / 2$. |
| 2014. | C | GRID-POINT DIMENSIOMS |
| 2015. | | $\underline{X T}=10+N X * \lambda 1+N Y * A 2$ |
| 2016. | | YT $=$ A3 + NY*A4 + NX*A5 |
| 2017. | Ξ | CHECK IP WIPHIM RECTAMGLE ENCLOSIMG PA PTERA THAT IS PAPMLLPL SO |
| 2018. | C | AXES |
| 2019. | | |
| 2020. | | |
| 2021. | | IF (S , EQ, O.) .OR. (C. EQ.).1) GO TO 35 |
| 2022. | $こ$ | CHPCK IF POINT IS OITHIN ACTUAL CBU PATTERN |
| 2023. | | |
| 2024. | | IF (YI .GT. (Y 2) - T* (XI-X(2))) , GO TO 3? |
| 2025. | | IF (YT -LT. (Y (4) +CT* (XT-X(4)))) G0 T0 3C |
| 2026. | | IF (Y゙.LT. (Y(1)-T* (XT-X(1))) GO T0 30 |
| 2027. | 35 | MGIN = NGIN + 1 |
| 2028. | | $N \operatorname{Cov}(\mathrm{~J}, \mathrm{~K})=\mathrm{NCOV}(\mathrm{J}, \mathrm{K})+1$ |
| 2029. | | I: (KTEST .GI. 5) WRITE(6,1025) NX,NY,XT, YT, NGIM, NCOV (J, K) |
| 2030. | 30 | COMTIMOE |
| 2031. | 33 | continoe |
| 2032. | | IP ($(N I M+N G I N)$ - 3Q. 0) GO TO 29 |
| 2033. | C | R3CORD AHY COVERAGE AS A HIT' |
| 2034. | | NHIT (L) $=$ NHIT(L) +1 |
| 2035. | | SCBU(L) $=$ NCBU (L) +1 |
| 2036. | | IP (KTEST.GT. 4) WEITE (6,1036) L, NHIT (L). NCBU (I) |
| 2037. | | |
| 2938. | | IP (NHIT(E) -GT. 25) GO 20130 |
| 2339. | | DO $129 \mathrm{~J}=1$, NST |
| 2040. | | If ($\mathrm{HHIT}(\mathrm{J}$) . EQ. 0) GO TO 7 (0 |
| 2041. | | IP (MHIT (J) - NZ. L) GO 70.123 |
| 2042. | | HI* (J, 1,NHIT (L) $=\mathrm{XB}$ |
| 2043. | | HIT (J, 2, NHIT (L) $=\mathrm{YB}$ |
| 2044. | | HIT (J, 3,NHIT (L)) = WWPM |
| 2045. | | If (NHIT(1) .EQ. 25) WaITE (6.1007) L. ITgial |
| 2046. | | GO T0 13n |
| 2047. | 120 | CONTINUE |
| 2048. | 130 | CONTINUE |
| 2049. | | IF (TGT(L, 10) NE. 1) GO To 15n |
| 2050. | | IP (NHIT(i) .GT. 259) GO To 15c |
| 2051. | | DO $140 \quad J=1.5$ |
| 2052. | | IF (HRN(J) EQ.) GO TO 15) |
| 2053. | | IF (HRW(J) .RE. L) GO 50 14? |
| 2054. | | HITR(J, 1, NHIT (L)) $=18$ |
| 2055. | | HITR(J, 2, MAIT (L)) = YB |
| 2056. | | HITR(J, 3,NHIT (L)) = WHPN |
| 2057. | | IF (UHIT (L) -EQ. 250) WRITE (6.1909) L, ITPIAL |
| 2C58. | 149 | COMTINOE |
| 2059. | 150 | COMTIMOE |
| 2060. | C | ************************ EECYCLE POR HOPE WEAPONS |
| 2061. | 20 | COMTIMJP |
| 2062. | | IF (IMIT2.EQ. 0) GO TO 40 |
| 2063. | | DO 160 MP $=3.8$ |
| 2064. | | PK $=$ EHD (MUPM, TGT (L, 10), NP)/100. |
| 2065. | | PSP = 1. - PR |
| 2066. | | DO 160 J $=1 . \operatorname{MxT}$ |
| 2067. | | DO $160 \mathrm{~K}=1 . \mathrm{NrT}$ |
| 2267.1 | | IP (NP.GT. 3) GO TO 16^ |
| 2068. | | $\operatorname{ICOV}(\mathrm{J}, \mathrm{K})=\operatorname{ICOV}(\mathrm{J}, \mathrm{K})+\operatorname{MCOV}(\mathrm{J}, \mathrm{K})$ |
| 2069. | 163 | |
| $2 \mathrm{C70}$ | C | |
| 2071. | 40 | comtinug |
| 2072. | | IF (PLAG. EQ, O) GO TO 200 |
| 2073. | | TCOT $=0$ |
| 2074. | | DO 165 HP $=3.8$ |
| 2075. | 165 | PST (11P-2) = 0.0 |
| 2076. | | DO $170 \mathrm{~J}=1 . \mathrm{MxT}$ |
| 2077. | | D0 $170 \quad K=1, W T T$ |
| 2078. | | IP (ICOV (N, K) \cdot GT. O) TCOV = TCOV 4 , |
| 2079. | | D0 170 WP $=3.8$ |
| 2980. | 170 | PST (MP-2) $=$ PST (NP-2) + (1.-PSCOV(J, R,NP-2) |
| 2081. | | TOTC $=$ \#xT*nYT |
| 2082. | | COV(L) - TCOV/SOTC |

| 2093. | | DO 18¢ $\mathrm{NP}=3.8$ |
| :---: | :---: | :---: |
| 2C34． | 180 | |
| 2085. | | |
| 2086. | X | $\operatorname{COV}(L),(P(L, I), I=9,8)$ |
| 2087. | c＊＊＊ | |
| 2088． | 200 | COMTIHU家 |
| 2089． | | E玉＊UR |
| 2090. | 1091 | |
| 2091． | 1002 | POPHAT（ ${ }^{\text {P }}$ ，NIN ．I4） |
| 2092． | 1203 | |
| $2 \mathrm{C93}$. | 1224 | |
| 2034. | I | 5P6．3．＇CJV＇，P6．4．＇PK．，6P6．3 \％ |
| 2095. | 1075 | |
| 2096. | 1096 | |
| 2C97． | 1097 | |
| 2098. | X | |
| 2099． | 1009 | |
| ， 13. | X | |
| く1う． | | Fv． |


```
    SUBEOUTIHE PLCTHT(NH,NB,LFH,MTD)
    IAPLICIT IMIEGER (2 (A-Z)
    REAL * Y
```



```
    DIBRSISION ICOL(13)
    DA:TAIBK/1H/.IX/ 1H*/.IY/ 1H+/.IS/ 1H-/.IE/ 1H*/
    THIS ROUTINE PLOTS THE IAPACT POINTS (BUT NOP CRATEPS) POE
    ALL HITS THAT HAYB BEEN STORED FOR A FONOAY/TAXI#AY. T%
    UILL PLOT NLL HITS THAT AFFECT RUNUAY OPERATION OP TO 5O 'FEEm:
    OF EITHER SIDE OF (OP TOJ A 3ON 'POOT' QUWGAY, PTMWAY LEMGTH
    IS LIHITED TO 13000 FEPT".
    IUID = UID/10 +5
        L E N = L T H / 1 0 0 ~ + 1 ~
        IF (LEM .GT. 129) LEN = 129
        LU = LEN/10
        LI = 10*LU + 1
        LU =LU + 1
        DO 40 }\begin{array}{ll}{\mathrm{ J }=1,40}\\{}&{I=41-J}
            N = 10,129
    ICOL(N) = ImK
    ICOL(1) = IE
        ICOL(LEN) = IE
        ICOL(IEN) = IE NND. (I.NE. IMID)) GO mo 14
        00 11 NS = 1.15%
    11 ECOL(NS) = IS
        DO 12 NS = 1,LI, 19
        12 ICOL(BS) = IF
        14 COHIINUE
        DO 2C N = 1,NH
        MY = IN(H)/10 + 5
        IP (NY .NE. I) GO TO 20
        I = XN(N)/100 +1
        IF (INX LT. 1) OR. (NX GT. 129)) GO TO 2?
        ICOL(NX)=IX
        IF (NZ(N) EEQ 1) ICOL(NX) = II
        CONTINUE
        Y = I/5.
        LY=Y
        IF ((Y-LY).NE. O.N) GO TO 39
        LYY = 5*LY-5
        WRITE (6,101) LYY,(ICOL(M), N=1,129)
        GO TO 40
        MEIEE (6,102) (ICOL (H),M=1,129)
        CONTINJE
        |RITE (6.103) (IN,I=1,12), VR
        RETURN
            PORAAT (* *,I2.129A1)
        1C1
        102
            PORAAT (" %.2X.129A11
103 PORAAT (*:00, 12(8x,I 2)./.
    x 40x, ' TENS BT THOUSANDS OF LENGTH UNITS *././.
    X 4CX. " IHPACN POIMTS ON FONWMY MUHBEP ",I2,%
    X 37X, (* = POINT IHPACT UPN * = CEO CENTRCTDI'1
    END
```



```
482.
<383.
i384.
2385.
2385.
2387.
2388.
2389.
2390.
2391.
2392.
2393.
2394.
2395.
2396.
2397.
2398.
2399.
2400.
2401.
2402.
2403.
2404.
2405.
2406.
2407.
240%.
2409.
2410.
2411.
2412.
2413.
414.
<4i5.
2410.
<417.
2418.
2419.
2420.
2421.
2422.
2423.
4424.
2425.
2426.
2427.
2420.
2429.
2430.
431.
642.
6433.
2433.
2434.
2435.
2437.
243%
2438.
439.
4440.
2441.
2+42.
2443.
2$44.
4445.
<446.
24*7.
2440.
2449.
2450.
4451.
2452.
2453.
2454.
*)55.
<4コ%.
<*57.
20%**
32
YD(1) =
CONTINUE
    LD(2) =TGE2(L,2) * I
    LD(3)=TGI2(L,3) *V
    XD(4)=TGT2(L,4) +U
    XD(5)=TGT2(L,5)+U
    XD(6)=TGT2(L,6) -V
    IC(7)=TGT2(L,7) =V
    XD(8) = TGT2(L,8) - U
    cHI = TH - PHL
    SC = SIH(CHI)
    Cc}=\operatorname{Cos(CBI)
    S1 = (SIGRS*CC*CC + SIGDS*SC*SC)** (.5)
    S2 = (SIGRS*SC*SC * SIGDS*CC*CC)**(.5i
    M = (4*TL1/S1) + 1
        = (4*TL2/S 2) + 
        (KTEST GT. 9) URITE(6,1009) U1. #2, S 1. S2
        ((N1 +M2);GT. <) GO TO 100
        90 K=1.7.2
        = XD(K)
        = X E (K+1)
        = X-XT
        (NPLAG .EQ. 1) GOTO 40
        = YI - Y CT* KL
        = - YY*S
        y = yYec - KX/S
        GO T0 50
    4 0
    50
        AIDI= (%)/TSDS
        IF (ALDI.GT. 12.) GO TO 90
        DD = SExP(-AIDI)
        HCYCLE = NCYLLLE *
        DU dO N = 1.#P
        AID2 = Z*H/TSES
        IF (AIU2.GT. 1&.) GU 20 10
        LH=SEXf(-AID2)
        UEH = DEH + DR*DD
        HCYCigk = Mcrcife * 1
        IF (KTaST,GT. IU) URITE(O,INJS)I,L,R,XI,YT,D,R,DD,DR,DEM
        h = a - CLS
        comtisue
        CONTIMOE
        CGU = DEW/(4.*|P)
        GO TO 160
C IF THE TAKGEI OLAEbSIOMS ARE SMALL (I.E. LESS THAN JUE-QUARTER
THE EAONECTIOM OP SIGHA PARALLEL TO TAE TABGET EOGE) IHE GIT
DEUSITY IS IAKEV AS THE AVERAGS OF THE VALOES AT THE POUR CORHERS.
If IT IS LARGbä, A GRID OF IMTERMAL pUIMIS IS ESTAGLISHED AND
THc HIT U&bSITY IS TAKEN AS THE AVERAGE OVER TGE IMEERMAL POIMTS.
    cuatIMUE
    UILI=TL1/(N1+1)
    OLL2 = TL2/(M<+1)
        My= M1 + 2
        |2=|2*2
        M2=M2 % 2, %M1
    |0% 15J 多=1,ym1
    IT = XD(1)*(E-1)*VILI*STE + (N-1)*OLL2*CTC
    YT = \O(2)* (H-1)*DILI*GTG - (M-1)*DIL2*STO
    xy=x-xT
    EF (MP&AG EW- 1) 60 T0 110
    IY = ys - I* cro<x
    v=-8%*S
    # = yyec - xy/S
    ju 20 120
```

```
24'5.
4+00.
<401.
2*0<0
2$03.
2404.
<40う.
2400.
4407.
4400.
<40y.
247v.
<471.
2472.
4473.
2474.
2475.
2475.
<477.
<47%.
<47%
2400.
<401.
24032.
<435.
<454.
<404.
<405.
<4i50.
2488.
2489.
2490.
249%.
2493.
2494.
2495.
2496.
2498.
2499.
2500.
2501.
2502.
2503.
2504.
2505.
2506.
2507.
2508.
2509.
2510.
251%.
2512.
2513.
2514.
        LょN=
        LEN= DeN/((1* (:1 * (12)*N1*N<)*NP)
        `UMIINJL
        ム&N!= +icN
        SEN-NS*r*&EL*A1T(I, 11)*DaN1/100.
```



```
        SaL41(L) = DLN*ILI*TL2
        LUV<(E,Ni) = -UV&(L,NR) EHIE1(i)
        uvatiNde
    REPEAT POR EACH TAHGET
    LF ((NR-GQ. 2).OR. (NV -LT. 2)) GO TO 195
        PSR(1)=(100. - END(NU, SHELT, 12))/100.
        PSE(2) = (100. - EBD(Na, SHELT, 14))/100.
        DO 190 L=1. बT2
        Lu 190 M = 2.NV
        P2(L,N+1)=1.-(1.- P2(L,N+1))*(PSR(N-i)**E4IT1(L))
        LP(KTEST,GT. 4) WBITE(6,1011) PSE,(EHITT(K),K=1,6)
        PSK(1) = (100.-EGD(NW,SHELT, 3))/100.
        HSF(2)=(100.-EHD(NW,SHELT,4))/100.
        PSR(3)=(100.-EHD(NH,SHELT,5))/100.
        lol
        R2(L,N)=1.-(1.-P2(L,M))*(PSR(N-5)*&EHIT1(L))
        IP (KTBST .GT. 4) URITK(6,1011) PSR,(EHITI(K),R=1,6)
        COMIINUE
        MR=MR + 1
        GHDL= EHU(NM,SHELT,1O)
        IF (MA & SQ. 21 GO
        DO 19% L = 1, MT2 
        P2(L,5)=1. - (1. - P2(L,5))*(PS**&HIT1(L))
        CONTINUE
2515.
2516.
2518.
2519.
2519.
2520.
2522.
453.
2524.
2525.
2526.
2527.
2528.
2529.
25290
2530.
2534.
2532.
2534.
DU 205 L = 1. NT2
P2(L,1)=1.-SKKP(-CUV2(L,1))
        IF (MPAIMT.GT. 2) EBTOEN
        WHITK(6,1000) VCICLE
        WRIES (6,1002)
        ##*O
        TCOV(1)=0.0
        Tcov( (2) = 0.0
        bLught (1) = 0.0
        BLugat (2) = 0.0
        BLugat (2) = = i,0,MT2
        Mu 210
```



```
        OU 208 I = 1,2
        xcov(L)= TCOV(\alpha) + cov2(L,I)
    208
        ULDGAT(I) = BLUGAT(I) * (1. - SExP(-Cov2(L,L)))
```

| 2535. 2536. | 210 | |
| :---: | :---: | :---: |
| 2537. | | CLDGAT (1) = BLDGHT (1)/Hy |
| 2538. | | BLDGHT (2) $=$ BLDGET (2)/4y |
| 2539. | | URITL (6,1010) TCOV (1), BLUGHT (1), TCOV(2), BLDGHT (2) |
| 2540. | | RETURE |
| 2541. | 1000 | |
| 2542. | 1002 | |
| 2543. | x | |
| 454. | K | 'AC(R2) PEOPLE AGE PARTS') |
| <345. | 1003 | |
| 2546. | $10^{3} 4$ | PG\&AAT ('1\%, COAPUTATION IGMORED THE CBO weapoms in the'. |
| 2547. | 1 | - expected value calculation') |
| <548. | 1005 | |
| 2549. | K | 4P6.0. 3E12.4) |
| 2550. | 1006 | |
| 2551. | 1007 | |
| 2552. | x | F8.5.' MOR DEx ', P14.10,//) |
| 2553. | 1008 | |
| 2554. | 1009 | |
| 2555. | 1010 | |
| 2556. | 1011 | |
| 2557. | 1011 | |
| 2558. | 1101 | PORHAT(" ., " ***** EXPHIT . 3 I8) |

| 2551. | | PUNCIION SEXP (X) | |
| :---: | :---: | :---: | :---: |
| 2562. | | IP (X.LT. -0.025) | GO TO 12 |
| 2563. | | SEXP $=1 .+\mathrm{X}$ | |
| 2564. | | RETURA | |
| 2565. | 13 | SEXP = EXP (X) | |
| 2566. | | PETUR | |
| 2567. | | END | |


```
2646. 900 STOCKS(NP,3) = ITEM
2647. 1000 STOCKS(ITEY.3) = 0
2648. C
2649.
2650.
2651
2652.
2653
2654
2655.
2656.
2656.
2657.
2658.
2659.
2660.
    c
    IP(KTEST.GT.4) URITZ(6,1101)ITEM,CLASS,TYPE, (STOCKS (ITPM,K),K=1,3)
    C
ITEM = ITEH +
IP (FLAG.EQ. 1) RETURN
N=N+3
IF((N .ND. 16) .AND. (D(N) .GT. O)) GO TO 20
IP (CARD EQ. NCASDS) RETURN
CARD = CARD + 1
GO mo 10
END
```

| P60． | | |
| :---: | :---: | :---: |
| 20tis． | | IMPLICIT INTf，Ft ？｜A－LI |
| 2664. | | INTEGED＊4 FLAC．KIND |
| アんの5． | c | UN，NCTRAP．NOMA TL，NOPOL |
| ？trate | | |
| \therefore Star． | | |
| ）nbr． | | CCMPAR／STORES／MXITEN， |
| chere | x | |
| 267C． | X | |
| \％671． | \times | EOIIV（4．3）］ |
| 2672． | | CGMMON／LERO／EOUIITI |
| 2673． | C | |
| 2674. | | IF（FLAC EGG 1）GC TO 10 |
| 2675． | | $\angle O C=1$ |
| 2676． | | CLASS $=0$ |
| 2677. | | LAST＝J |
| 2078． | | 0 O $51=1.1$ |
| 2079． | 5 | EOUI（1）$=0$ |
| 2689． | | RETURN |
| 2681． | C | |
| 2682 。 | 13 | EuUIVILOC）$=0$ |
| 2683. | | MAXLOC $=10 C$ |
| 2684． | | RETURA |
| 2685． | C | ＊＊＊＊＊＊＊＊＊＊ |
| 2686． | | ENTRY SAVE（CLAS．TYP，KIND） |
| 2687. | C | ＊＊\＃\＃\＃\＃\＃\＃\＃＊＊ |
| 2688． | | TYPE $=$ TYP＋ 1 |
| 2689. | C | IF KTEST GT SI WRITEIG．11J1：LOC．CLAS．CLASS，TYPE，LAST．KIND |
| 2tyo． | | IF IKTEST，GT． 51 WRITEIG，IINII LOC．CLAS．CLASSITYPE．LASTOKINO |
| 2691. | 1101 | FORMATI＇＇．＇SAVER＊8IB＇ |
| 2692． | C | |
| 2693. | | IF ICLAS ．NE．CLASSI GC TO 50 |
| 7694． | | IF（TYPE EO．LAST GO TO 800 |
| 2695. | 50 | EQUIVILOCI $=0$ |
| 7696. | | $L D C=L O C+1$ |
| 2697． | | LAST＝TYPE |
| 2698. | | CLASS $=$ CLAS |
| 2699. | C | |
| 2700. | | COTO（100．200，300．400．500．600）．CLASS |
| 2701. | C | |
| 7702. | 100 | IF ITYPE ．LT． 1000 GO TO 110 TYPE＝TYPE－ 999 ＊NQPEOP |
| 2704. | 110 | PEOPLECTYPE，4）$=$ LOC |
| 7705. | | G0 TO 8J0 |
| 2706. | 200 | AGEITYPE．41＝LOC |
| 2707. | | GO TO 800 |
| 2758. | 300 | PARTS（TYPE．4）＝LOC |
| 2709. | | GO TO 800 |
| 2710. | 400 | AMMO（TYPE．4）＝LOC |
| 7711. | | GO TO 800 |
| 2712. | 500 | TRAP（TYPE，4）＝LOC |
| 2713. | | C0 70800 |
| 2714. | 600 | MATERLITYPE．41＝LOC |
| 2715. | | GO 10800 |
| 2716. | C | |
| 2717. | 800 | EOUIVILOCI＝KIND EOUICCASSI $=1$ |
| 7718. | | IF（KIND．EO．O）EOUIICLASSI＝ 1 |
| 2719． | | LOC＝LOC＊ 1 NOEOU！RETURN |
| 2720. | | IF ILCC LT A NOEOUII RETURN |
| 7721. | | WRITF（S．IOOI）CLAS，TYP．KIND |
| 772？． | 1001 | FORMAT（＊＊＂HE EOUIVALENCE MRRAY IS TOO SMALL；OVERFLOWED＇． |
| 2723. | x | －AT ． 3181 |
| 2774． | | STOP |
| 2725． | | END |

| ctu． | 20 | B． $60 \mathrm{~K}=10.15$ |
| :---: | :---: | :---: |
| 2ril． | c | $L A I A(K)=0$ |
| ＜t12． | し | |
| Cbis． | | |
| 2014. | | |
| 2015． | | |
| ctin． | － | |
| ：cll． | 76 | CUNLINJE |
| cts． | \checkmark | |
| ＜01）． | －＝－ | |
| cosi． | \therefore | |
| c＜l． | \checkmark | |
| － 6 く | | （いT－1－¢ |
| －125． | | いいこ．－j |
| 20＜4． | | 江似＝0 |
| 2E\＆ 5 ． | | S Jicel $=0.0$ |
| 2020． | | |
| －¢ く | | ．J＋w $1=2.0$ |
| ことく0． | | ：j．．－ut＝ 2.0 |
| ＜tく． | | I．．．－：$=0.0$ |
| chive | | 心6：5－ 0.0 |
| ＜til． | \bullet | |
| くといく。 | －－： | |
| 4031． | c | |
| cisu． | | |
| ＋ 4.0 | | 二人s＝Site |
| 2，10． | | ir INTL Ev．is maxS \quad（SM |
| － 5 \％ | － | |
| 如3う． | | 0）AJJ $k=1$. HAXS |
| 293y． | | |
| 2845. | | |
| ＜841． | | |
| ＜ 84. | | －F（NT：EE．O）GO TO 200 |
| <843. | \checkmark | |
| 2844. | | IULU34 $=$ TUTCO4 $+\mathrm{P} 2(\mathrm{~K}, 6)$ |
| 204s． | | ［0：ucs $=$ ToTCOS＋P2（k，7） |
| 2840. | | |
| －E47． | | い i」＜10 |
| 2848. | \checkmark | |
| 264\％． | $\angle \mathrm{CC}$ | TUTCU4 $=$ TOTCO4 $\cdot \mathrm{P}(5 \mathrm{SHEL}(4), 3)$ |
| 2850. | | IUT心U5 $=$ TOTCO5 + P（SUEL，（K）．4） |
| 2851. | | 10EEUS $=$ TOTCO6 $*$ P（5HEL（K）．5） |
| ＜85く． | 416 | CCNIINJE |
| 2853. | c | |
| 2854. | | LP（KTEST．GT．3）WRITE（6．1102）TOTCO1．TOTCO2．TOTCOE， |
| 2855. | x | TOTCO4．TOTCOS．TOTCO6．ACLCSS |
| 2856. | 1142 | FOBMAT（＂＂，DAatag－A＂，6F8．4．I8） |
| 2857. | C | |
| 285d． | | |
| 2859. | | IOTC2 $=(100 *(t 0 T C 02+0.605)$／baIS |
| 2860. | | 10TL $=(100 *($ Totco $3+0.005)$ ）EAXS |
| 2861. | c | |
| 2862. | c | iSilmate the percentage loss tc exposec aibceafi as a panction |
| 2863. | c | Of Thz ramp space that is covered al gr or cru Efrects． |
| 2864. | $\stackrel{C}{C}$ | |
| 2865. | <15 | TOTAL $=0$ |
| $2 \mathrm{eb6}$. | | KAREA $=0$ |
| 2867. | | UNSHEL $=0$ |
| 2868. | | TOTHIT $=0$ |
| 2869. | c | |
| 2870. | | DO $230 \mathrm{I}=1.4 T$ |
| 2871. | | IF（TGT（I，10），NE．日AAPS）G0 20220 |
| 2872． | | AREA $=$ TGT（I．12）＊TGT（I，13） |
| 2873. | | $P K=1 .-(1,-P(1,5))$ |
| 2874. | | TCTAL $=$ TOTAL＊AREA |
| 2875. | | KAREA＝KAREA＋PK＊AREA |
| 2876. | <20 | continue |
| 2877. | | IP（TOTAL GT．O）UNSHEL $=$（100＊RASEA）／TOTAL |
| 2878. | | |
| 2879. | | TORUIT \quad TOTHIT＊NHITII |
| 2880. | 236 | Conil mue |
| 2881. | c | |
| 2882. | c | brcord the repaias on the least dagageo rumbay ame |
| 2883. | c | THE TUTAL NUABER OP HITS OM THE TAXIUAIS． |
| 2884. | c | |
| 2885. | | IF（（RAPAIR－TOTHIT）－EQ．O）GC TO 250 |
| 2886. | | DATA（4）$=9$ |
| 2887. | | DATA（5）＝MOPAC |
| 288 d． | | datal6）＝REPALR |
| 2889. | \pm | |
| 2890. | | CO $240 \mathrm{~K}=7,9$ |
| 2091． | 240 | DAIA $(\mathrm{K})=0$ |
| 4092． | $\stackrel{\sim}{0}$ | |


```
2988.
8989.
299n.
2991.
2942.
2993.
2994.
2995.
2996.
2997.
299月.
2999.
3000.
3001.
30.32.
3003.
3004.
3005.
3056.
3007.
3008.
3009.
3010.
3011.
3012.
3013.
3014.
3015.
3016.
3017.
3018.
3019.
3020.
3021.
3022.
3023.
3024.
3025.
3026.
3027.
3028.
3029.
3070.
3031.
3032.
30.33.
3034.
3035.
3036.
3037.
3038.
3039.
3040.
3041.
3042.
3043.
3044.
3045.
3046.
3047.
3047.
3044.
3049.
3050.
3051.
3052.
3053.
3054.
3055.
3058.
3057.
3058.
3058.
3059.
3060.
1061.
3062.
3063.
3064.
3064.
3065.
```



```
    THE OUTPUTS FOR TSAR MAY BE PRINTED, PUNCHED CN CARDS AND FILED
    OIRECTLY CN DISK FOR PRODUCTION RUNS. THE 2ND ANO 3RD OPTIONS
    ARE CONTRCLLED BY THE VARIABLES PUNCH AND TSAR, RESPECTIVELY,
    ANC ARE EXERCISED WHEN THE VARIABLES ARE INITIALIZED TO UNITY.
    THE PRINY OPTIONS ARE CCNTROLLEO BY THE CONTROL VAAIABLE MPDAMM
```



```
    DISK=ITRIAL * 20
    SKIP=0
    IF ({CLASS.NE.1).AND.(AII.I).EO.J\.AND.(EOUIICLASSI.EO.OI| SKIP=!
    GARDTY = 40
        JBASE=0
    M=3
    DO 10 K = 1.15
    CATA(K)=0
    IF IMA EEO. 1: GO TO 160
    00 150 I = 2. MA
    IF ICLASS .NE. 11 GO TO 30
    IF II EO. ALLS GO TC 150
    ITEM = A\I.1)
    TOT =0.0
    IF (ITEM.NE. O) GO TO 40
    IF IMII,4) EO. OI GO TO 150
    IF IAII,4
    NT = STOCKSIITEM,1)
    FRAC = STOCKSIITEM,2:/10.0
    TOT = TOT + FRACFPINT,NRI
    ITEM # STOCKSIITEM.3)
    IF IITEM GT. OI GO TO 40
    IF \ITEM.GT.O\ GO TO 40
    IF(TOT EEQ. O.0) GOTCSO
    A11.21=A{1.2i* (10%TCTI
    A(1,3) = A\I.3
    TOT1 TOT/100.
    TGTL TOT/10
    IF I&CLASS .EO. 1).ANC. (TYPE.GT.NOPEOPII TTYPE = 999+TYPE-NCPEOP
    IFIIPDAM.EO.II.OR.IPDAM.EQ.SII WRITERE.TTG6I CLASS. TTYPE. TOTI
C
1101
l101
    A REPORT DF ZERO LOSSES MAY BE REQUIRED FOR TSAR
        IF (AII,G\ EEO. O) GC TO 100
            IF IISKIP.EO. 2).AND.ITOT.EO.O.OI\ GO TC 150
C
    MHEN THE RESOURCE TYPE SPECIFIED IN THE TSARINA TARGET GRRAYS
    IS A CUMPCSITE CF SEVEPAL TVPES USEO IN TSAR. REPCRT THE DAMAGE
    IS A COMPCSITE CF SEVEP
    60 LOC=A(t.4)
    7 5
        KINO E EOUIVILOCI
        IF IKINC ITT. }20\mathrm{ GC TO 150
            IF (RTEST.GT.5) WGITESG.1IOL: I. CLASS. KIND. TOT
            IF IRTESTOGTOSY
            DAYAIMO2B = RINO
            OATACm+31 (ITCF* 2.5)
            M*M*6
            IF (M.NE. 15) GO P0 90
            IF (PDAM GGT. II WRITECG.7777I CARDTY.JBASE, (DATAIKI,K=I,IF)
            IF ITSAR.EQ.II WRITEIDISKI CARNTV,JBASE, IDATAIKINK=IGISI
            IF IPUNCT.EQ:II MRITEIT,BEB&I CAROTY.JBASE. IOATAIKI,N=IOISI
            00 K0 I.IS
            DATA|KI - 0
            M - }
            Inc coc* 1
```


| 3144. | c | ************ | |
| :---: | :---: | :---: | :---: |
| 3147. | c | | |
| 3148. | | MAXPEC $=$ ICPIOP | |
| 3149. | | ALL - NCPEDP | |
| 3150. | C | | |
| 3151. | | RE TURN | |
| 3152. | c | | |
| 3153. | 1766 | formatic '.'Class \cdot.l2, | TYPE', 15. F7.31 |
| 3154. | 7777 | Formar (0, 'i2.14: 15171 | |
| 3159. | 8888 | f(Ryat(12.17.1515) | |
| 3155. | | eno | |

Appendix D

PROGRAMMERS' NOTES

The TSARINA program, as listed in Appendix C, requires about 250 K bytes (or 64 K words) of core memory. This requirement is the sum of about 115 K bytes for program $\log 1 \mathrm{c}$ and 135 K bytes for data storage. If TSARINA is to be run on a computer system that does not support half-word FORTRAN integers (e.g., INTEGER*2) the space required for data storage will be approximately doubled.

If these core requirements are excessive for some installations, they can be reduced in two different ways. First, the program is readily adaptable to a relatively efficient overlay structure that would reduce the space requirements for the program logic. The structure listed below should not affect operating speed seriously and would cut the core required for program logic from about 115 K to about 25 K bytes:

INSERT MAIN,GAUSS
OVERLAY ZONE
INSERT INPUT, STORE, SAVER, JMEMO
OVERLAY 2ONE
INSERT BOMB,TESTHT,HITTGT,TGTDIM,TGTORD,TGTZON
OVERLAY ZONE
INSERT CBU, EXPHIT
OVERLAY ZONE
INSERT CHECKR,RUNWAY, PLOTHT
OVERLAY ZONE
INSERT PRINT,STATIS,DANAGE, REPORT,RESTAT

The space required for data storage may also be reduced dramatically, depending upon the nature of the problem of interest to the user. As can be seen from a careful review of the code and comments in the first half of the MAIN routine (pp. 71, 72), the version listed in Appendix C provides space for a relatively large and complex problem: 500 targets, 50 attacks, 1000 resource packets, and hundreds of different types of resources of various classes. For lesser problems, the dimensions of the appropriate storage arrays can be reduced before the program is compiled. With the few exceptions noted in the MAIN routine all of these changes are confined to COMMON statements.

The same procedure can also be used, of course, to increase the size of the storage arrays, if the user's problem exceeds the bounds of TSARINAs current dimensions. With the exception of the numbers of different types of the different classes of resources, there is no practical limit on the size of the problem that can be treated, other than those imposed by available core and the user's budget.

[^0]: *R-1872-PR, AIDA: An Airbase Damage Assessment Model,
 D. E. Emerson, The Rand Corporation, September 1970.
 $\%$ R-2584-AF, An Introduction to the TSAR Simulation: Program: Model Features and Logic, D. E. Emerson, The Rand Corporation, June 1980.

 HFSee p. 15.

[^1]: *The maximum numbers of targets and weapon-delivery passes are readily changed.

[^2]: *AIDA's restrictions on target location have been relaxed for TSARINA. It is no longer necessary that all targets be located in the first quadrant of the $X-Y$ coordinate system, and the targets may cover an area as large as 32000×32000 dimension units. When the target location entries are not entirely within the first quadrant, TSARINA automatically translates the coordinate system to place all targets (and attacks) in the first quadrant for processing. Furthermore, an auxiliary program is available that will convert dimensional information structured for the Eglin AFB MASSIVE computer program into the format required for TSARINA.
 **All subcategories of a given resource class, located within targets of the same type, are assumed to have the same vulnerability.

[^3]: *This restraint is easily changed by redefining MXITEM (line 85, page 72) and redimensioning the STOCKS array (line 34 , page 71 et al.)

[^4]: *When the damage to some, but not all, resources is specified, the dimensions in TSAR's subroutine BOMB currently permit at most 50 damage specifications for each resource class.

[^5]: \%Since TSAR is only concerned with the repairs that are to be accomplished to provide the minimum area for flight operations, without regard to which runway is to be repaired, a single datum is required.

[^6]: *Since TSAR compares a random number with the damage estimate for each aircraft, losses will vary from trial to trial even though the expected value mode is used. When the Monte Carlo mode is used, the damage estimate used for these comparisons will also vary between trials.

[^7]: ＊This feature，as currently implemented，behaves as described when TSAR is dimensioned for 1 to 100 different personnel types． Defining that dimension as NOPEOP，aircrews are identified for TSAR with the number NOPEOP +1 ；thus，if NOPEOP $=100$ ，aircrews are personnel type $\# 101$ ．

[^8]: *An auxiliary program is available for converting dimension data prepared for the MASSIVE program (developed at Eglin AFB) into the format required for TSARINA.

[^9]: \%Up to 33 supplementary cards, if there are more than ten target types.

[^10]: *When electronic card images are used, columns is through 88 may be used for alphanumeric target names by entering a " 1 " in column 18 of the CONT card.
 *: If ATT2 cards are to be used, all linear dimensions must be in feet.

[^11]: *The number " 1000 " added to a personnel designation specifies off-duty personnel, and " 100 " added to a munitions designator specifies weapons that are not assembled.

[^12]: *Illustrative values are noted on Table A-1.

